共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
3.
利用BP神经网络对注塑工艺参数及其相对应的翘曲变形量样本进行训练,得到了描述工艺参数到翘曲量映射关系的人工神经网络(ANN)模型;验证了此模型的准确性;得出了工艺参数与注塑件翘曲变形量的内在联系,为以后的参数优化以及翘曲量预测起到重要的指导作用。 相似文献
4.
塑壳断路器一般通过注塑成型工艺制得。在注塑成型过程中,模具温度、熔体温度、保压压力以及保压时间均对制件的翘曲变形产生一定的影响。以模具温度、熔体温度、保压压力以及冷却时间作为研究参数,以翘曲变形量作为研究目标,采用最优拉丁超立方抽样法抽取合适的样本,建立RBF神经网络模型,结合遗传算法对制件的翘曲变形量进行优化,得到最佳的成型工艺参数组合。结果表明:四个因素的影响程度大小为模具温度>冷却时间>保压压力>熔体温度。当模具温度为50℃、熔体温度为250℃、保压压力为60 MPa以及冷却时间为10 s时,制件的翘曲变形量最小为2.307 7 mm,相较未优化前降低1.294 2 mm,制件成型质量得到明显改善。 相似文献
5.
6.
7.
基于翘曲分析的注塑模工艺参数的优化 总被引:2,自引:0,他引:2
结合CAE及Taguchi DOE技术,研究工艺参数对注塑制品翘曲量的影响。采用了有交互作用的L16(215)正交表设计实验以及没有交互作用的L9(34)正交表设计实验,研究了因素如熔体温度、模具温度、保压压力、保压时间和注塑时间对翘曲影响的显著性。对所选参数,保压压力和熔体温度对注塑制品的翘曲量影响最大。通过两次正交设计实验,使手机上壳制品的翘曲量减少了34.23 %,提高了制品品质。 相似文献
8.
注塑成型是制造塑料产品应用最广泛的一种方法。整个注塑成型过程一般分为注射、保压和冷却3个阶段。成型过程中的翘曲变形是注塑制品一种严重的缺陷。由于注塑制品质量主要受工艺条件影响,所以如何确定最佳工艺条件来减少翘曲变形成为改进注塑制品质量的一个关键。以模具温度、熔体温度、注射时间、保压时间、保压压力和冷却时间为设计变量,运行Moldflow软件进行制品的翘曲变形分析,用BP神经网络模型来建立翘曲变形与设计变量的函数关系,加权形式的期望提高加点准则实现序列的迭代优化设计。这种加点准则能调整局部和全局搜索,在保证计算效率的同时提高对全局最优解的逼近程度。通过实例验证,所提出的优化方法能有效地减小注塑制品的翘曲变形。 相似文献
9.
为了优化注塑成型工艺,研究了注塑成型的数学模型,以及产生翘曲形变的原因,在此基础上利用Moldflow软件对薄壁件塑料注塑成型过程中的宽浇口平板进行了仿真实验,并采用了无定型塑料丙烯腈-丁二烯-苯乙烯共聚物+聚碳酸酯(ABS+PC)对其进行注射、保压、冷却等流程模拟,选定了保压压力、熔体温度、冷却时间、模具温度、注射时间、保压时间等主要工艺参数,并通过方差比较的方法对这些工艺参数进行了评价,最终确定了注塑成型的优化方案。通过实验得出了ABS+PC的最优工艺参数组合,有效降低薄壳制件的翘曲量并优化了其制品性能。 相似文献
10.
11.
以激光器支架为例,运用Moldflow软件进行模流分析,并设置了正交试验,以得到各因素水平的最佳组合,从而减小翘曲变形量,提高塑件质量,使其达到装配要求。然后根据所得数据建立了BP神经网络预测模型,再利用测试样本验证模型的准确性,结果发现仿真值与预测值的误差均在±3%以内。 相似文献
12.
针对塑件翘曲变形过大而导致塑件注塑失效的问题,通过运用CAE分析得出了影响翘曲变形过大的主要因素为收缩不均;采用正交试验方法获得了初步优化后参数,为Tθ(230℃)Ts(65℃)PI(70 MPa)ti(3.5 s)Ph1(60 MPa)th1(10 s)Ph1(75 MPa)th1(12 s)tc(6 s),对应的翘曲值为5.53 mm。在此基础上,再次运用GSO算法对改进的T-S模糊神经网络进行预测,得到了进一步优化的翘曲值,为3.49 mm,对应优化后的工艺参数为Tθ(230℃)Ts(68℃)PI(70 MPa)ti(4 s)Ph1(65 MPa)th1(8 s)Ph1(75 MPa)th1(14 s)tc(4 s),将优化后的工艺参数应用于实际注塑后,塑件的实效问题得到了有效解决,具有较强的实践参考价值。 相似文献
13.
以某塑料拼插齿轮玩具为研究对象,采用自然平衡法设计1模144腔注塑模具。对有限元模型进行合理简化,并采用Moldflow软件进行塑料齿轮注射成型过程中的流动和翘曲分析。针对初始方案中出现的熔接痕和翘曲等缺陷,建立齿轮玩具BP 人工神经网络模型,通过BP神经网络算法训练各工艺参数,并对体积收缩率和总翘曲量进行预测。将训练后较优的工艺参数组合应用于注射成型后,使得该塑料齿轮熔接痕分布改变,翘曲变形量明显降低。 相似文献
14.
15.
《塑料科技》2017,(9):74-78
为了解决无人机固定翼在注塑过程中工艺参数的优化选择问题,在考虑了熔体温度、模具温度、保压压力、保压时间、注射时间因素下,用模流分析软件Moldflow和正交试验相结合的方法对翘曲量、体积收缩率和缩痕指数进行了模拟分析,同时为了提高优化效率,根据正交试验数据建立了BP神经网络预测模型,并用模型对工艺参数进行了优化和实际生产验证。结果表明:优化后的塑件最大翘曲变形量、体积收缩率、缩痕指数分别优化了0.212 5 mm、1.26%、1.223%,提高了塑件质量。而且仿真值与模型的预测值基本吻合,相对误差在3%以内,验证了模型的可行性,为优化工艺参数方面的研究提供了理论依据。 相似文献
16.
17.
基于拉丁超立方设计建立了椭球基(EBF)神经网络模型描述注塑工艺参数与翘曲值间的函数关系,将EBF神经网络模型与Kriging模型对比,说明EBF神经网络模型可以准确地描述注塑工艺参数与翘曲值之间的函数关系,并结合多目标粒子群算法对工艺参数进行优化,并与邻域培植遗传算法优化结果对比,说明多目标粒子群算法的优点。结果表明,基于EBF神经网络模型和粒子群优化算法可以使塑料出水管翘曲值减小11.64 %,同时使保压时间和冷却时间总和减小了2.13 s,从而在出水管批量生产过程中减少了生产时间。 相似文献