首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A switched implementation of average dynamic output feedback laws trough a ∑‐Δ‐modulator, widely known in the classic communications and analog signal encoding literature, not only frees the sliding mode control approach from state measurements and the corresponding synthesis of sliding surfaces in the plant's state space, but it also allows to effectively transfer all desired closed loop features of an uniformly bounded, continuous, average output feedback controller design into the more restrictive discrete‐valued (ON‐OFF) control framework of a switched system. The proposed approach is here used for the input‐output sliding mode stabilization of the “boost” DC‐to‐DC converter. This is achieved by means of a well known passivity based controller but any other output feedback design would have served our purposes. This emphasizes the flexibility of the proposed sliding mode control design implementation through ∑‐Δ‐modulators.  相似文献   

2.
This paper describes a new controller design procedure and tuning method for a PWM buck dc‐dc converter. First, linear optimal feedback is designed using the LQR approach. Then the designed control law is implemented using a PID controller incorporated with a load‐decoupled PD compensator. The PID controller is tuned to achieve the optimal design based on the output error voltage directly, instead of using an estimator. When the proposed PD compensator is used, the converter is robust with respect to the input voltage and output current changes and the parameter perturbations. We also provide the conditions for the robust stability assurance of the closed‐loop system.  相似文献   

3.
This paper addresses the problem of regulating the output voltage of a DC‐DC buck‐boost converter feeding a constant power load, which is a problem of current practical interest. Designing a stabilising controller is theoretically challenging because its average model is a bilinear second order system that, due to the presence of the constant power load, is non‐minimum phase with respect to both states. Moreover, to design a high‐performance controller, the knowledge of the extracted load power, which is difficult to measure in industrial applications, is required. In this paper, an adaptive interconnection and damping assignment passivity‐based control—that incorporates the immersion and invariance parameter estimator for the load power—is proposed to solve the problem. Some detailed simulations are provided to validate the transient behaviour of the proposed controller and compare it with the performance of a classical PD scheme.  相似文献   

4.
This paper studies the problem of using a sampled‐data output feedback controller to globally stabilize a class of nonlinear systems with uncertain measurement and control gains. A reduced‐order observer and a linear output control law, both in the sampled‐data form, are designed without the precise knowledge of the measurement and control gains except for their bounds. The observer gains are chosen recursively in a delicate manner by utilizing the output feedback domination approach. The allowable sampling period is determined by estimating and restraining the growth of the system states under a zero‐order‐hold input with the help of the Gronwall–Bellman Inequality. A DC–DC buck power converter as a real‐life example will be shown by numerical simulations to demonstrate the effectiveness of the proposed control method.  相似文献   

5.

This paper proposes a methodology for single-phase power factor correction with DC–DC single-ended primary inductance converter (SEPIC) using cascade control strategy which comprises of genetic algorithm-based outer PI controller and an inner current controller which uses an adaptive neuro-fuzzy inference system-based sliding mode controller. DC–DC SEPIC is a fourth-order converter, and in order to reduce the complexity in controller design, reduced-order model of the original higher-order system is obtained by using Type-I Hankel matrix method. The performance of the proposed system is analysed using MATLAB/Simulink-based simulation studies. In order to ensure the robustness of the proposed controller, the performance parameters such as percentage total harmonic distortion, power factor, % voltage regulation, and % efficiency are analysed. From the simulation results, it is inferred that the proposed method provides efficient tracking of output voltage and effective source current shaping for load, line, and set point variations.

  相似文献   

6.
Abstract— A high‐performance high‐efficiency LED‐backlight driving system for liquid‐crystal‐display panels is presented. The proposed LED‐backlight driving system is composed of a high‐efficiency DC‐DC converter capable of operating over a universal AC input voltage (75–265 V) and a high‐performance LED‐backlight sector‐dimming controller. The high efficiency of the system is achieved by using an asymmetrical half‐bridge DC‐DC converter that utilizes a new voltage‐driven synchronous rectifier and an LED‐backlight sector‐dimming controller. This controller regulates current using lossless power semiconductor switches (MOSFETs). The power semiconductor switches of the proposed DC‐DC converter, including the synchronous rectifier switch, operate with zero voltage, achieving high efficiency and low switch voltage stress using the asymmetrical‐PWM and synchronous rectifier techniques. To achieve high performance, the proposed driving system performs the sector dimming and the current regulation using low‐cost microcontrollers and MOSFET switching, resulting in high contrast and brightness. A100‐W laboratory prototype was built and tested. The experimental results verify the feasibility of the proposed system.  相似文献   

7.
A comparative control study for a maximum power tracking strategy of variable speed wind turbine is provided. The system consists of a direct drive permanent magnet synchronous generator (PMSG) and an uncontrolled rectifier followed by a DC/DC switch‐mode step down converter connected to a DC load. The buck converter is used to catch the maximum power from the wind by generating an efficient duty cycle. Distinct Maximum Power Point Tracking (MPPT) algorithms are analyzed and compared: a classical Proportional‐Integral controller (PI) and two based Fuzzy Logic Controllers (FLC), including a conventional Fuzzy‐PI and an Adaptive FLC‐PI. The main aim of the presented study is to develop an advanced control scheme for wind generators to ensure a high level operating of the system and a maximum power extraction from the wind. This is achieved by analyzing the behavior of the system under fluctuating wind conditions employing Matlab Simpower Systems tool. Simulation results confirm that the Adaptive FLC‐PI controller algorithm has better performances in terms of dynamic response and efficiency especially in comparison with the ones of a PI controller under variable wind speed.  相似文献   

8.
This paper proposes a hybrid controller which is a combination sliding mode control and PI control techniques for AC grid integrated offshore wind farm (OSWF) with voltage source converter ‐ high voltage direct current system. The controller must be capable of controlling AC voltage, DC‐link voltage, reactive power and effective power transfer. To examine the FRT capability, a symmetrical fault is applied at onshore AC grid side and compared the performances of the studied system based on the hybrid and PI controllers. The dynamic modelling and linearized system by state‐space modelling for the studied system are explained in detail. The small signal stability analysis and controller stability are observed with the help of the eigenvalue analysis. The analysis of the studied system with a hybrid and conventional controllers are conducted in the software environment of the MATLAB/SIMULINK . The effect of parameter uncertainty on total system stability is examined with the help of eigenmatrix of the studied system.  相似文献   

9.
The output voltage regulation problem of a DC‐DC buck converter is investigated in this paper via an observer‐based finite‐time output‐feedback control approach. Considering the effects of unknown load variations and the case without current sensor, by using the technique of adding a power integrator and the idea of nonseparation principle, a finite‐time voltage regulation control algorithm via dynamic output feedback is designed. The main feature of the designed observer and controller does not need any load's information. Theoretically, it is proven that the output voltage can reach the desired voltage in a finite time under the proposed controller. The effectiveness of the proposed control method is illustrated by numerical simulations and experimental results.  相似文献   

10.
该文首先讨论了三相PWM整流器的功率整流与逆变运行方式以及并网控制方法,详细分析了分布式电源中并网三相PWM整流器的仿射非线性模型,由于系统模型的非线性,一般的线性控制方法误差较大,鲁棒性不强。这里应用智能滑模控制方法设计电压外环控制器,仿真和实验表明该方法是有效的,系统具有高的功率因数,可向电网提供高质量的电能。  相似文献   

11.
The ever increasingly stringent performance requirements of industrial robotic applications highlight significant importance of advanced robust control designs for serial robots that are generally subject to various uncertainties and external disturbances. Therefore, this paper proposes and investigates the design and implementation of a robust adaptive fuzzy sliding mode controller in the task space for uncertain serial robotic manipulators. The sliding mode control is well known for its robustness to system parameter variations and external disturbances, and is thus a highly desirable and cost-effective approach to achieve high precision control task for serial robots. The proposed controller is designed based on a fuzzy logic approximation to accomplish trajectory tracking with high accuracy and simultaneously attenuate effects from uncertainties. In the controller, the high-frequency uncertain term is approximated by using a fuzzy logic system while the low-frequency term is adaptively updated in real time based on a parametric adaption law. The control efficacy and effectiveness of the proposed control algorithm are comparatively verified against a recently proposed conventional controller. The test results demonstrate that the proposed controller has better trajectory tracking performances and is more robust against large disturbances than the conventional controller under the same operating conditions.  相似文献   

12.
For the system with sliding mode controllers operated by on/off switches, ‘chattering’ appears in the output of the system when its switching frequency is restricted. In power systems, the switching frequency is commonly limited to prevent power losses, and chattering or ‘ripple’ appears especially in the system current. Common methods to decrease such ripple are based on ‘harmonic cancellation’ using the multiple number of phase channels having the desired phase shift that brings cancellation in the sum of outputs from the individual channels. In this article, a design principle of sliding mode control for a multiphase controller is proposed. The methodology is originated from the concept of multidimensional sliding mode and provides desired phase shifts between phases with the help of adaptive width for the hysteresis loops in switching elements. The chattering suppression effect is demonstrated by simulations for the DC–DC converter systems in various situations.  相似文献   

13.
This paper deals with the design of a robust sliding mode‐based extremum‐seeking controller aimed at the online optimization of a class of uncertain reaction systems. The design methodology is based on an input–output linearizing method with variable‐structure feedback, such that the closed‐loop system converges to a neighborhood of the optimal set point with sliding mode motion. In contrast with previous extremum‐seeking control algorithms, the control scheme includes a dynamic modelling‐error estimator to compensate for unknown terms related with model uncertainties and unmeasured disturbances. The proposed online optimization scheme does not make use of a dither signal or a gradient‐based optimization algorithm. Practical stabilizability for the closed‐loop system around to the unknown optimal set point is analyzed. Numerical experiments for two nonlinear processes illustrate the effectiveness of the proposed robust control scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
A systematic approach to design a nonlinear controller using minimax linear quadratic Gaussian regulator (LQG) control is proposed for a class of multi‐input multi‐output nonlinear uncertain systems. In this approach, a robust feedback linearization method and a notion of uncertain diffeomorphism are used to obtain an uncertain linearized model for the corresponding uncertain nonlinear system. A robust minimax LQG controller is then proposed for reference command tracking and stabilization of the nonlinear system in the presence of uncertain parameters. The uncertainties are assumed to satisfy a certain integral quadratic constraint condition. In this method, conventional feedback linearization is used to cancel nominal nonlinear terms and the uncertain nonlinear terms are linearized in a robust way. To demonstrate the effectiveness of the proposed approach, a minimax LQG‐based robust controller is designed for a nonlinear uncertain model of an air‐breathing hypersonic flight vehicle (AHFV) with flexibility and input coupling. Here, the problem of constructing a guaranteed cost controller which minimizes a guaranteed cost bound has been considered and the tracking of velocity and altitude is achieved under inertial and aerodynamic uncertainties.  相似文献   

15.
This paper proposes a new control technique for synchronous buck DC–DC converter. Theory, design and implementation of the proposed control technique are provided. A new approach for converter controller synthesis based on dynamic evolution control theory is presented. In order to synthesize the converter controller, this method uses a simple analysis of nonlinear equation models of the converter. The synthesis process is simple and requires a quite low bandwidth for the controller. Therefore, this control method is suitable for digital control implementation. As an illustrative example, the synthesis of synchronous buck DC–DC converter controller is discussed in detail. The model of the synchronous buck DC–DC converter system was implemented using SimPowerSystems toolbox of MATLAB-SIMULINK. Performance of the proposed dynamic evolution control under step load change and step input voltage condition was investigated. Simulation results confirm that the proposed control method is superior to traditional PI based controller because of fast transient response and good disturbance rejection.  相似文献   

16.
The problem of output control in multiple‐input–multiple‐output nonlinear systems is addressed. A high‐order sliding‐mode observer is used to estimate the states of the system and identify the discrepancy between the nominal model and the real plant. The exact and finite‐time estimation may be tackled as long as the system presents the algebraic strong observability property. Thus, a continuous robust input‐output linearization strategy can be obtained with respect to a prescribed output. As a consequence, the closed‐loop dynamics performs robustly to uncertainties/perturbations. To illustrate the advantages of the proposed method, we introduce a study case that demands a robust linear system behavior: the self‐oscillations induced in an underactuated mechanical system through a two‐relay controller. Experiments with an inertial wheel pendulum illustrate the feasibility of the proposed approach.  相似文献   

17.
This paper addresses the problem of controlling grid connected photovoltaic (PV) systems that are driven with microinverters. The systems to be controlled consist of a solar panel, a boost dc–dc converter, a DC link capacitor, a single‐phase full‐bridge inverter, a filter inductor, and an isolation transformer. We seek controllers that are able to simultaneously achieve four control objectives, namely: (i) asymptotic stability of the closed loop control system; (ii) maximum power point tracking (MPPT) of the PV module; (iii) tight regulation of the DC bus voltage; and (iv) unity power factor (PF) in the grid. To achieve these objectives, a new multiloop nonlinear controller is designed using the backstepping design technique. A key feature of the control design is that it relies on an averaged nonlinear system model accounting, on the one hand, for the nonlinear dynamics of the underlying boost converter and inverter and, on the other, for the nonlinear characteristic of the PV panel. To achieve the MPPT objective, a power optimizer is designed that computes online the optimal PV panel voltage used as a reference signal by the PV voltage regulator. It is formally shown that the proposed controller meets all the objectives. This theoretical result is confirmed by numerical simulation tests.  相似文献   

18.
The rising cost of fossil fuels, their high depleting rate and issues regarding environmental pollution have brought the attention of the researchers towards renewable energy technologies. Different renewable energy resources like wind turbines, fuel cells and solar cells are connected to DC micro grid through controllable power electronic converters. In presence of these diverse generation units, robust controllers are required to ensure good power quality and to regulate grid voltage. This paper presents a sliding mode control based methodology to address the above mentioned challenges. The proposed technique keeps the switching frequency constant so that electromagnetic compatibility (EMC) issues can be solved with conventional filter design. Parallel operation of converter in DC micro gird is considered. Chattering reduction and power quality improvement by harmonic cancellation is proposed. A scaled down hardware for unregulated 11.5 V to 17.5 V input and 24V output is designed and tested. The experimental results show good performance of the controller under different loads and uncertain input voltage conditions. Moreover, the results show the robustness of the closed loop system to sudden variations in load conditions. Furthermore, a significant improvement in power quality is achieved by harmonic cancellation of chattering in the output of the converters.  相似文献   

19.
The output regulation of DC–DC converters is a challenging problem due to the fast switching behavior in the presence of the uncertainty/variation in the model, input, and load. In this paper, the Zeta converter is first analyzed and then using the Linear Matrix Inequality (LMI) theory a robust controller is designed to cope with this issue. Inspired by the photovoltaic applications of the Zeta converter, and due to the nature of the solar cells, not only the load variations but also the input voltage variations are considered in the controller design. Finally, the proposed controller is implemented in a DSP-based controller and its performance is experimentally verified and compared with the widely used PI controller.  相似文献   

20.
This paper proposes a full‐order sliding‐mode control for rigid robotic manipulators. The output signals of the proposed controller are continuous. Therefore, the controller can be directly applied in practice. A time‐varying gain is constructed to regulate the gain of the signum function in the sliding‐mode control so as to avoid the overestimation of the upper‐bounds of the uncertainties in the systems and reduce the waste of the control power. The chattering is attenuated by using a novel full‐order sliding manifold and establishing a novel ideal sliding motion. The proposed method is robust to the load disturbance and unmodeled parameters, especially to the unknown portion in the control matrix. Simulation results validate the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号