首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Woody debris has several important roles in running water. Less is known about the ecology of wood in great rivers than in smaller rivers and streams. We used a probability survey to estimate the abundance of littoral and shoreline wood along the following mid‐continent great rivers of the United States in summer 2004–2006: the Missouri River, Upper Mississippi River, and the Ohio River. We counted wood pieces >0.3 m in diameter from a zone between the bank full level out into the river 10 m. We categorized wood according to its origin and function as “beached” (transported from upriver but not providing aquatic habitat), “wet” (origin unknown and providing aquatic habitat; includes snags), or “anchored” (attached to the bank at its current location and providing aquatic habitat). We counted 5900 pieces of wood at 447 sites across rivers. Approximately 56 percent of pieces were beached, 30 percent were wet, and 14 percent were anchored. Overall, mean abundance of wood was 2.6 pieces of wood 100 m?1 of shoreline (approximately 3.0 m3 100 m?1). Abundance of wood (pieces per unit distance of river) was much lower than has been reported for many smaller streams and rivers. There was more wood along the Upper Mississippi River (3.3 pieces 100 m?1) than elsewhere (≤2.4 pieces 100 m?1). The mean abundance of wood on the Ohio River decreased significantly between the 2004 and 2005 survey periods due to high flows. Longitudinal patterns in wood abundance were weak. There was less anchored and wet wood along shorelines protected by revetment (e.g., rip rap). There was generally more wood along shorelines where the riparian land use was characterized as forest rather than agriculture or developed. Mean abundance of wood along forested, un‐revetted shorelines was approximately four pieces 100 m?1 of shoreline (= 80 pieces km?1 of river). This estimate of mean wood abundance for what amounts to least disturbed riparian and shoreline conditions is relevant for great river bioassessment and management. Published in 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Aridland riparian forests are undergoing compositional changes in vegetation and wildlife communities due to altered hydrology. As flows have been modified, woody vegetation has shifted from native‐tree dominated to non‐native and shrub encroached habitats. Squamate vertebrates such as lizards and snakes are important food web links in riparian ecosystems of the Sonoran Desert. However, little is known about how these communities might respond as riparian forests transition from native tree dominated habitats to open xeroriparian woodlands. We used pitfall arrays deployed across three types of riparian forest to document reptile community patterns, measure vegetation, and produce species‐habitat models. Riparian forests differed on the basis of habitat composition and physiognomy. Two types, cottonwood‐willow (Populus‐Salix) and mesquite (Prosopis) stands, were characterized by high woody species richness. The third type, non‐native saltcedar (Tamarix) stands, had high densities of woody debris and greater canopy coverage. Results show that lizards were common and abundances greatest in cottonwood‐willow, especially for arboreal species. Species‐habitat models for three of five lizard species indicated a negative association to saltcedar‐invaded habitat and no species appeared to select saltcedar‐dominated habitat. Mesquite was an intermediate habitat between upland and riparian, and supports high species diversity. A wildfire in the cottonwood‐willow forest disproportionately affected abundance of ground‐foraging whiptail (Aspidoscelis) lizards; whereas, abundance of arboreal spiny (Sceloporus) species was unchanged. Expected drivers from climate and water use could transition cottonwood forests to other woody‐dominated types. Our results suggest that mesquite woodlands would provide higher quality habitat for riparian reptiles compared to non‐native saltcedar stands.  相似文献   

3.
The retention capacity of the floodplain and riparian zone for suspended matter and nitrogen has been investigated in the Adour River, a seventh order stream in south-west France. Suspended matter and nitrogen fluxes through a 25 km meandering stretch of the river were measured during two flood events and compared with the amount of sediment trapped in the riparian zone (1.1 km2) and the major floodplain (16.8 km2) of the studied area. It was estimated that the floodplain and the riparian zone together retained between 10 and 20% of the suspended matter entering the stretch under study during the two main floods (138 700 Mg). Moreover, they retained about 11% of the total particulate nitrogen fluxes (640 Mg). Although the riparian zones are 15 times smaller than the major floodplain, the total suspended matter and particulate nitrogen deposition were, 50 and 17 times, respectively, larger in the riparian zone. The results obtained on the Adour River floodplain show that large river systems should not be considered only as export systems as riparian zones can retain a significant amount of suspended organic and mineral matter during floods.  相似文献   

4.
The role of native trees, Fremont cottonwood (Populus fremontii) and Goodding willow (Salix gooddingii), in structuring the riparian small mammal assemblage on rivers in the American desert southwest is unclear. It is unknown, for example, whether these trees directly or indirectly provide the food or shelter necessary for the presence of any species. Because of the rapid and widespread decline of gallery forest, due in part to river regulation, the retention of remnant stands and replacement of lost stands are major regional conservation issues. To elucidate small mammal–forest linkages, we compared patterns of macrohabitat use among terrestrial small mammals at two rehabilitated and one unmanipulated alluvial floodplain site along the highly regulated lower Colorado River. We also compared current patterns to the Colorado River faunal associations Joseph Grinnell documented in 1910, prior to significant flow regulation. We used grid‐based, capture‐mark‐recapture techniques at two revegetation sites, each a mosaic of six distinct macrohabitats, including planted cottonwood/willow, to associate species with specific macrohabitats. We also trapped a ‘reference’ grid containing naturally regenerating cottonwood and willow at a site on the lower Bill Williams River floodplain. Despite very poor development of cottonwood plantings at one of the revegetated sites, each supported at least nine species and harbored all seven species that Grinnell associated with areas flooded nearly every year. The set of species Grinnell associated with cottonwood/willow stands (Peromyscus maniculatus, Reithrodontomys megalotis, and Sigmodon arizonae) was trapped at both revegetation sites but entirely absent at the reference site. The Bill Williams site may be inaccessible to Sigmodon, but the absence of the other two species is probably a consequence of differences in floodplain structure and functioning among the study sites as well as between the Bill Williams site and historic Colorado River riparian areas. Our data suggest the richness of the native lower Colorado River riparian small mammal assemblage is unrelated to the presence or absence of cottonwood/willow trees, but does depend in part upon the presence or absence of dense herbaceous vegetation. Resource managers attempting to rehabilitate degraded desert riverine ecosystems need to consider understory as well as overstory plant species in revegetation efforts. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
Riparian vegetation development and macroinvertebrate assemblages were studied in 16 streams formed between 35 and 230 years ago, following glacial recession in Glacier Bay National Park, southeast Alaska. Riparian vegetation established most rapidly in streams where flow variation in downstream reaches was buffered by a lake. Riparian vegetation development was positively correlated with lower bank stability, but was independent of stream age. Roots and branches of riparian vegetation trailing into streams (trailing riparian habitat—TRH) were shown to be an important habitat for a number of macroinvertebrate taxa. In young and unstable streams, TRH was colonized mainly by Plecoptera whereas in more stable lake‐influenced streams Simuliidae dominated. Significant coarse woody debris (CWD) accumulations were not observed until after approximately 130 years of stream development had occurred when certain channel features, such as gravel bars, were stabilized by dead wood. Where dead wood was present, opportunistic wood taxa were abundant, even in the younger streams. However, a xylophagous species, Polypedilum fallax, was not recorded until streams were over 100 years old. Two‐way indicator species analysis (TWINSPAN) using presence/absence of macroinvertebrate taxa on TRH, initially divided streams into lake and non‐lake systems, but subsequent divisions were consistent with differences in stream age. TWINSPAN of macroinvertebrate assemblages on dead wood again highlighted differences in stream age. Canonical correspondence analysis indicated that bed stability and stream age were the most important environmental variables influencing macroinvertebrate distribution on TRH. Trailing riparian habitat was most abundant in moderately unstable streams where it facilitates invertebrate colonization. CWD contributes markedly to channel stabilization, provides habitat for invertebrate xylophages, and confers additional habitat complexity. Maximum levels of CWD are predicted to occur in non‐lake streams after approximately 300 years, but at least a further 100 years will be required in stable streams below lakes where dead wood entrainment is not enhanced by flooding, channel migration and bank undercutting. A conceptual model summarizing the role of TRH and CWD on stream development in Glacier Bay is presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Riparian vegetation is widely recognized as a critical component of functioning fluvial systems. Human pressures on woody vegetation including riparian areas have had lasting effects, especially at high latitude. In Iceland, prior to human settlement, native downy birch woodlands covered approximately 15%–40% of the land area compared to 1%–2% today. Afforestation efforts include planting seedlings, protecting native forest remnants, and acquiring land areas as national forests. The planted and protected nature of vegetation along rivers within forests provides a unique opportunity to evaluate the various taxa within riparian zones and the channel stabilizing characteristics of the vegetation used in afforestation. We investigated bank properties, sediment textures, and root characteristics within riparian zones along four rivers in forests in Iceland. Bank sediment textures are dominantly sandy loam overlying coarser textures. Undercut banks are common because of erosion of the less cohesive subsurface layer. Quantitative root data indicate that the woody taxa have greater root densities, rooting depths, and more complex root structures than forbs or graminoids. The native downy birch has the highest root densities, with <1 mm roots most abundant. Modeling of added bank cohesion indicates that willow provides up to six times and birch up to four times more added cohesion to the coarse sediment textures comprising stream banks compared to no vegetation. We conclude that planting and protecting the native birch and willow helps to reduce bank erosion, especially where long-term grazing exclusion can be maintained.  相似文献   

7.
The recruitment of wood from the riparian zone to rivers and streams provides a complex habitat for aquatic organisms and can influence both aquatic biodiversity and ecosystem function. The Daly River in the wet–dry tropics of northern Australia is a highly seasonal, perennially flowing sand‐bed river where surveys of river wood aggregations at the reach scale (~2 km) in 2008 and 2009 recorded densities of 37–78 km?1 and identified distinct types of river wood aggregations: key pieces, standing trees, fallen trees, wrack and single pieces. After larger than average flows in the 2008/2009 wet season, between 46% and 51% of the surveyed river wood had moved. The distribution of wood age classes indicated continual recruitment and slow turnover of wood within the river. Surveys of fish and habitat characteristics at the mesohabitat scale (~100 m) showed fish species richness; diversity and fish abundance were not correlated to the proportion of wood present. Fish assemblage structure was associated with wood cover as well as other environmental variables such as stream width and depth. The importance of in‐stream wood also varied for different species and age classes of fish. This study documents the dynamic nature of river wood aggregations and their complex and variable distribution and suggests their importance as fish habitat in this tropical river. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.

Forested riparian corridors are a key management solution for halting the global trend of declining ecological status of freshwater ecosystems. There is an increasing body of evidence related to the efficacy of these corridors at the local scale, but knowledge is inadequate concerning the effectiveness of riparian forests in terms of protecting streams from harmful impacts across larger scales. In this study, nationwide assessment results comprising more than 900 river water bodies in Finland were used to examine the importance of adjacent land use to river ecological status estimates. Random forest models and partial dependence functions were used to quantify the independent effect of adjacent land use on river ecological status after accounting for the effects of other factors. The proportion of adjacent forested land along a river had the strongest independent positive effect on ecological status for small to medium size rivers that were in agricultural landscapes. Ecological quality increased by almost one status class when the adjacent forest cover increased from 10 to 60%. In contrast, for large rivers, adjacent forested land did not show an independent positive effect on ecological status. This study has major implications for managing river basins to achieve the EU Water Framework Directive (WFD) goal of obtaining good ecological status of rivers. The results from the nationwide assessment demonstrate that forested riparian zones can have an independent positive effect on the ecological status of rivers, indicating the importance of riparian forests in mitigating the impacts of catchment-level stressors. Therefore, forested buffer zones should be more strongly considered as part of river basin management.

  相似文献   

9.
In riparian forests, clear-cutting causes long-lasting changes in both riparian and aquatic biota. In this work, we examined if past clear-cutting events occurred at different times have imprints on riparian forests in a Mediterranean river in central Italy. We carried out a randomized, plot-based vegetation survey of riparian forests in systematically sampled 500 m-long sectors along the whole river, dividing the riparian zone into two internal and two external strips. From historical aerial photos, past clear-cutting events within plots were detected and classified in age classes: (i) cut in the past 8 years (recent); (ii) cut between 8 and 19 years ago (intermediate); (iii) no signs of clear-cutting in the last 19 years (distant). We analyzed the responses of vegetation to clear-cutting and strip position. Alien species richness was higher and woody species richness was lower in recently clear-cut areas compared to those with a distant clear-cutting event. Moreover, recently cut woods had more alien and synanthropic species. Intermediate clear-cut areas had higher levels of invasion by alien species compared to areas with distant cut. Riparian forests of internal strips are impacted by clear-cutting, but seem to recover in 8–19 years thanks to their natural resilience. Conversely, recent or intermediate clear-cutting events did not affect any of the investigated vegetation attributes in the external strips since such forests were already invaded by alien and synanthropic species after human disturbance. Our results confirm that clear-cutting events can have long-lasting effects on Mediterranean riparian forests, confirming the vulnerability of river ecosystems to clear-cutting and suggesting the need for more caution in management practices to improve the conservation status of riparian forests.  相似文献   

10.
The expected recovery of the natural conditions of large regulated rivers over the distance downstream from a dam is limited by relative tributary size according to the Serial Discontinuity Concept; however, geomorphology may also influence the recovery process. We examined the woody vegetation of the riparian zone in seven river segments distributed along the regulated reach of the Tiétar River in central‐western Spain, which flows through two distinct geomorphic templates. Whereas the annual runoff has decreased by 30% on average along the entire studied reach following the construction of the Rosarito Dam and the initiation of field irrigation in the region, the magnitude and frequency of the peak flows decreased by 30% immediately downstream from the dam but recovered the natural values with the distance downstream. We evaluated the recovery patterns toward the natural riparian conditions by comparing woody species composition, diversity and distribution of vegetation patches established prior to and after dam completion. Our results did not indicate a recovery gradient of any of the analysed vegetation attributes downstream from the dam. Instead, we found that the difference in the slope of the stream channel and banks, the width of the valley and the size of substratum particles among the surveyed patches were factors that significantly mediated dam and tributary effects on vegetation and influenced the degree of vegetation recovery. Hence, the maintenance of the intensity of the flow alteration scheme by the numerous water withdrawals and the low tributary contributions, coupled with differential geomorphological characteristics along the reach, overwhelmed the natural tendency for the river to restore its natural conditions with distance downstream. Improving water management and, particularly, restoring endangered riparian ecosystems require a detailed understanding of existing and potential woody species behaviour across the geomorphological settings of rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Extensive desnagging (removal of large woody debris and living riparian vegetation) and associated river improvement works were conducted in rivers of southeastern Australia (Victoria and New South Wales) between at least 1886 and 1995. Swamp drainage, large woody debris removal and vegetation clearing were strongly supported by legislation, government funding and institutional arrangements in both states. As a result, large amounts of large woody debris were removed from rivers, regenerating indigenous vegetation was cleared from within designed alignment widths and, ironically, huge numbers of exotic trees, especially willows, were planted. The environmental impacts of desnagging have only been documented on a few impacted rivers but have included increased flow velocity, spatially extensive bed degradation, massive channel enlargement and loss of fish habitat. Recognition of the need for more integrated land and water management, and new research on the hydraulic, geomorphic, biogeographic and ecological significance of large woody debris and the values of indigenous riparian vegetation during the 1980s led to a major shift in river rehabilitation. We have drawn on our own and other published research to further develop a set of guidelines for the incorporation of large woody debris into river rehabilitation plans. Our guidelines extend those recently prepared for southeastern Australia and address site selection, where to place timber, the amount to be introduced, how to distribute it, techniques of introduction and woody debris sources. However, in the long term, riparian vegetation rehabilitation within the potential recruitment zone is essential to supply large woody debris. Given that our results demonstrate that very large woody debris makes a significant contribution to the total loading, it will be a very long time (>100 years) before natural recruitment can be recreated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
To understand the influence of dams on connectivity of riparian plant communities along rivers, we examined plant dispersal by water (hydrochory) and riparian plant community attributes upstream and downstream from dams on two rivers in the southern Rocky Mountains, Colorado, USA. Drifting plant propagules were collected from the water column along reaches upstream and downstream from dams to examine the longitudinal and temporal variation in seed‐pool species composition and concentration of water‐transported seeds. Similarities between species composition of the hydrochoric seed pool and local standing riparian vegetation were used to evaluate the degree of longitudinal connectivity along river corridors and to isolate the relative contributions of local versus regional species pools to hydrochoric species composition. Furthermore, several synthetic attributes (longevity, origin, life‐form and dispersal mode) and species composition of riparian plant communities were examined to explore the effects of interrupted propagule dispersal on standing vegetation. We estimated that as many as 120 million seeds were transported via hydrochory along free‐flowing reaches of the Rocky Mountain streams in a single growing season. Seed concentration (seeds/m3) in the water column was reduced by 70–94% along reaches downstream from dams compared to free‐flowing reaches. The similarity in species composition of hydrochoric seeds and local standing vegetation was nearly two times greater downstream from reservoirs compared to upstream. This suggests that hydrochory complements local species pools by importing seeds from throughout the upstream catchment area along free‐flowing river reaches, but that hydrochoric seeds are derived primarily from local sources along regulated river reaches. Species richness recovers as a function of downstream distance from contributions of standing vegetation and seeds from tributary streams. Hydrochory may extend the period over which viable seeds of a parent population are dispersed. Even after dispersal of parent populations has terminated, seeds may continue to be available due to residence time in water transport. This extension of the ‘effective dispersal window’ of some species may exceed two weeks or more and may influence the likelihood of successful establishment. In this study, synthetic attributes of riparian vegetation did not differ significantly between free‐flowing and regulated reaches, whereas formal statistical comparisons of community composition upstream and downstream from reservoirs indicate that there are differences in community composition upstream and downstream from dams. These findings suggest that the consequences of 50 to 100 years of fragmentation result in community‐wide effects along Rocky Mountain streams and that these effects may be partially explained by dam‐caused disruption in connectivity of plant populations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Butterfly assemblages were used to compare revegetated and natural riparian areas along the lower Colorado River. Species richness and correspondence analyses of assemblages showed that revegetated sites had fewer biological elements than more natural sites along the Bill Williams River. Data suggest that revegetated sites do not provide resources needed by some members of the butterfly assemblage, especially those species historically associated with the cottonwood/willow ecosystem. Revegetated sites generally lacked nectar resources, larval host plants, and closed canopies. The riparian system along the regulated river segment that contains these small revegetated sites also appears to have diminished habitat heterogeneity and uncoupled riparian corridors. Revegetated sites were static environments without the successional stages caused by flooding disturbance found in more natural systems. We hypothesize that revegetation coupled with a more natural hydrology is important for restoration of butterfly assemblages along the lower Colorado River. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
滦河流域河流岸边带健康状况快速评价   总被引:1,自引:0,他引:1  
以滦河流域为例,在流域生态分区的基础上,充分考虑岸边带功能的发挥,以岸边带内的植被覆盖、生物多样性和堤防形式三方面因素开展不同生态区域的河流岸边带快速健康评价。研究结果显示了不同生态区域内河流岸边带的健康状况。河流岸边带健康状况评价能够在较大尺度范围内快速、准确地反映岸边带的生态状态,针对区域特性提出相应的保护与修复措施。总之,本研究可为全面了解滦河流域河流岸边带现状以及今后的保护与修复提供参考,同时为其他流域的规划和管理提供参考。  相似文献   

15.
We investigated interactions of riparian vegetative conditions upon a suite of channel morphological variables: active channel width, variability of width within a reach, large wood frequency, mesoscale habitat distributions, mesoscale habitat diversity, median particle size and per cent fines. We surveyed 49 wadeable streams, 45 with low levels of development, throughout the Upper Little Tennessee River Basin in the Southern Appalachians. Conversion of riparian forest to grass has reduced aquatic habitat area (quantified by active channel width), channel width variability, wood frequency, mesoscale habitat diversity and obstruction habitat (wood and rock jams), and such conversion has increased the fraction of run and glide habitat. Channels with grassy riparian zones were only one‐third to three‐fifths of the width of channels with forested riparian zones, and channels with grassy or narrow forested riparian zones were nearly devoid of wood. Particle size metrics were strongly affected by stream power and agricultural cover in the basin, but the data suggest that elimination of riparian forest reduces median bed particle size. Results indicate that even modest increases in the extent and width of forested riparian buffers would improve stream habitat conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Nonnative plant invasions are a management concern, particularly in riparian forests, but little is known about mechanisms through which they influence vertebrate communities. In the American Southwest, native trees such as cottonwood (Populus spp.) are thought to provide better habitat for breeding birds than nonnative plants, which are more tolerant of human‐altered conditions. To evaluate effects of riparian forest composition on riparian‐nesting birds, we examined nest plant use along two rivers in New Mexico that differed in abundance of nonnative vegetation. Of the nests we observed, 49% along the Middle Rio Grande were constructed in nonnative plants, compared with 4% along the Gila River. Birds in the canopy and cavity‐nesting guilds constructed less than 5% of their nests in nonnative plants along either river. At the Middle Rio Grande, birds in the subcanopy/shrub guild constructed 67% of their nests in nonnative plants. Despite the relatively low availability of cottonwoods, they were used by greater numbers of species than any other woody plant at either river. Riparian obligates and species of conservation concern in the canopy and cavity guilds were especially dependent on cottonwood and Arizona sycamore (Platanus wrightii). Our results show that, although nonnative trees and shrubs support large numbers of nests for certain birds, cottonwoods and other large native trees are disproportionately important to riparian bird communities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Riparian ecosystems are central elements in many landscapes because of their shape, diversity and function as filters and corridors. They are also among the environments most disturbed and threatened by humans. Human-induced changes in riparian vegetation and flora were assessed by comparing free-flowing and regulated rivers in northern Sweden. Although riparian vegetation structure is rather uniform along free-flowing rivers, it varies distinctly along regulated rivers because of different water-level fluctuations in storage reservoirs, run of the river impoundments and unimpounded but regulated reaches. The total species richness of vascular plants per river in the riparian zone was similar between four free-flowing and four regulated rivers in northern Sweden. However, species richness per 200 m long site was considerably lower, and almost all groups of species were more species-poor per site in the regulated rivers due to perturbations caused by regulation. Both free-flowing and regulated rivers showed an increase in the species richness of ruderal plants towards the coast. In contrast, the species richness of natural plants showed different longitudinal patterns in the two types of rivers, and differences were largest along the middle reaches of the rivers. The reasons why responses in vegetation and flora to human perturbation varied downstream along regulated rivers are not known, but factors such as different disturbance patterns, irregular distribution of remnants of former riparian soils and vegetation and differences in regional plant species richness and plant dispersal along the river corridor may be important.  相似文献   

18.
The mesoscale (100–102 m) of river habitats has been identified as the scale that simultaneously offers insights into ecological structure and falls within the practical bounds of river management. Mesoscale habitat (mesohabitat) classifications for relatively large rivers, however, are underdeveloped compared with those produced for smaller streams. Approaches to habitat modelling have traditionally focused on individual species or proceeded on a species‐by‐species basis. This is particularly problematic in larger rivers where the effects of biological interactions are more complex and intense. Community‐level approaches can rapidly model many species simultaneously, thereby integrating the effects of biological interactions while providing information on the relative importance of environmental variables in structuring the community. One such community‐level approach, multivariate regression trees, was applied in order to determine the relative influences of abiotic factors on fish assemblages within shoreline mesohabitats of San Pedro River, Chile, and to define reference communities prior to the planned construction of a hydroelectric power plant. Flow depth, bank materials and the availability of riparian and instream cover, including woody debris, were the main variables driving differences between the assemblages. Species strongly indicative of distinctive mesohabitat types included the endemic Galaxias platei. Among other outcomes, the results provide information on the impact of non‐native salmonids on river‐dwelling Galaxias platei, suggesting a degree of habitat segregation between these taxa based on flow depth. The results support the use of the mesohabitat concept in large, relatively pristine river systems, and they represent a basis for assessing the impact of any future hydroelectric power plant construction and operation. By combing community classifications with simple sets of environmental rules, the multivariate regression trees produced can be used to predict the community structure of any mesohabitat along the reach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Riparian or streamside woodlands include obligate riparian trees and shrubs (obligates) that are restricted to streamside zones, and facultative riparian species that are abundant in, but not restricted to the riparian areas. Due to their distinctive life history requirements, it may be predicted that the ecological specialist obligates would be more vulnerable than the facultative generalists to impacts from river damming and flow regulation. We tested this along the Snake River through Hells Canyon, USA, where two native riparian shrubs dominate: the obligate sandbar willow (Salix exigua), and the facultative, netleaf hackberry (Celtis reticulata). We assessed riparian conditions over the past century by comparing ground‐level and aerial photographs taken after 1907 and in the 1950s in advance of three dams, versus recent conditions. These comparisons revealed three changes downstream from the dams: (1) the depletion of surface sands and sandbars and (2) reductions in sandbar willow versus (3) the proliferation of hackberry in dense bands above the typical high‐water line. The willow decline probably resulted from the depletion of sand following sediment trapping by the reservoirs, combined with changes in the seasonal water flow pattern. The increase in hackberry may have resulted from a beneficial ‘irrigation effect’ of daily water releases for power generation during the summer. The opposing responses reflect the plants' differing life histories and may partially resolve impacts of river regulation on alluvial sediments versus the instream flow pattern. We consider other riparian studies that suggest that obligates such as cottonwoods (Populus angustifolia, P. deltoides and P. fremontii) are highly vulnerable to river regulation, while facultative trees and shrubs such as trembling aspen (Populus tremuloides), wolf‐willow (Elaeagnus commutata) and velvet mesquite (Prosopis velutina) are more resilient. These results suggest that conservation of riparian woodlands should emphasize the ecological specialist obligates, while facultative species may be less vulnerable to river regulation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
River regulation is associated with vegetation encroachment and invasions of some non‐native species in the semi‐arid west. Shifts in the abundance of native and non‐native woody riparian species are an interplay of regulation, life history traits and an array of flow and physical environmental variables. We sought to compare plant densities and per cent cover of several invasive species over two time periods in a paired river study, contrasting three different degrees of regulation along reaches of the Green and Yampa rivers in Colorado and Utah, USA. We censused patches of non‐native plants and recorded per cent cover in quadrats along 171 river km. The upper Green (10.1 patches ha?1) had the highest invasive plant patch density followed by the lower Green (4.4 per ha) and the Yampa (3.3 per ha). Invasive species were present in 23%, 19% and 4% of sample quadrats, and an average of 0.28, 0.22 and 0.04 invasive species detected per square metre was recorded along the upper Green, lower Green and Yampa Rivers, respectively. Most species had significantly (p ≤ 0.02) higher percent cover on the upper Green than either or both the lower Green and the Yampa River. Whereas the less regulated river reaches maintain lower densities of invasive species than the most regulated reach, long‐term persistence of this pattern is still in question as some species patches showed notable increases on the Yampa and lower Green Rivers from 2002–2005 to 2010–2011. Although invasion is enhanced by flow regulation, life history traits of some species suggest invasion is likely, regardless of flow regulation. Published 2015. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号