首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

The effects of ion-beam energy on the internal stress and optical properties of tantalum pentoxide (Ta2O5) thin film have been investigated. Ta2O5 thin films were deposited on unheated glass substrates by ion-beam sputter deposition (IBSD) with different ion-beam voltage V b. The mechanical properties, internal stress and surface roughness, and the optical properties, refractive index and absorption, were studied directly after deposition. The refractive index, extinction coefficient and surface roughness were found to depend on the ion-beam energy. The internal stresses were measured by the phase-shifting interferometry technique. The film stress was also found to be related to V b, and a high compressive stress of -0.560 GPa was measured at V b = 750 V. Ta2O5/SiO2 multilayer coatings had smaller average compressive stress than single-layer Ta2O5 film.  相似文献   

2.
Tantalum oxide (Ta2O5) films were formed on silicon (111) and quartz substrates by dc reactive magnetron sputtering of tantalum target in the presence of oxygen and argon gases mixture. The influence of substrate bias voltage on the chemical binding configuration, structural, electrical and optical properties was investigated. The unbiased films were amorphous in nature. As the substrate bias voltage increased to −50 V the films were transformed into polycrystalline. Further increase of substrate bias voltage to −200 V the crystallinity of the films increased. Electrical characteristics of Al/Ta2O5/Si structured films deposited at different substrate bias voltages in the range from 0 to −200 V were studied. The substrate bias voltage reduced the leakage current density and increased the dielectric constant. The optical transmittance of the films increased with the increase of substrate bias voltage. The unbiased films showed an optical band gap of 4.44 eV and the refractive index of 1.89. When the substrate bias voltage increased to −200 V the optical band gap and refractive index increased to 4.50 eV and 2.14, respectively due to the improvement in the crystallinity and packing density of the films. The crystallization due to the applied voltage was attributed to the interaction of the positive ions in plasma with the growing film.  相似文献   

3.
《Optical Materials》2005,27(2):241-248
Thin (≈1 μm), waveguiding and c-axis oriented ZnO films of good optical quality have been fabricated on corning glass substrates by r.f. magnetron reactive sputtering without substrate heating. The optical parameters of the films deposited in different O2:Ar sputtering gas mixtures were found to vary. The extraordinary and ordinary refractive indices (ne and no respectively) of the ZnO film grown in 60% O2 and 40% Ar were found to be the highest (ne=1.9876, no=1.9692) and closest to bulk single crystal values, and the birefringence of the film was ≈0.018. The films were annealed at 380 °C in air for 1 h, as a result of which the crystalline quality of the films was found to improve with increase in X-ray density and decrease in stress. While the refractive index decreased, the propagation loss was lowered substantially (3–5 dB/cm) as a result of annealing. The annealed zinc oxide film with minimum stress exhibited lowest loss (3 dB/cm) and highest birefringence (≈0.018). This indicated a correlation between propagation loss and stress.  相似文献   

4.
In this study, ZnO thin films were fabricated on a Pt(111)/TiOx/SiO2/Si substrate using the RF magnetron sputtering method. Then, the effect of the crystallization orientation and microstructure on the piezoelectric and optical properties of the ZnO thin film was investigated for various O2/(Ar+O2) gas ratios. When the O2/(Ar+O2) gas ratio was 50%, the intensity of the (002) peak corresponding to the preferred orientation of the ZnO thin film was a maximum and the minimum FWHM value of 0.56° was observed. The surface roughness of the ZnO thin film measured using AFM also had a minimum value of 16.43 °C at an O2/(Ar+O2) gas ratio of 50%. The piezoelectric characteristics of the ZnO thin film were measured using the pneumatic loading method (PLM) and the corresponding constant had the largest value of 11.9 pC/N at an O2/(Ar+O2) gas ratio of 50%. The transmittance of the ZnO thin film obtained from the transmittance curve using a spectrophotometer was slightly greater than 80% in the human visible light region at an O2/(Ar+O2) gas ratio of 50%. By using the refractive index data obtained from the transmittance curve and the Sellmeir dispersion relation, we can also predict the refractive index at a wavelength of 400 nm. When the O2/(Ar+O2) gas ratio was 50%, the refractive index was 2.043 and, at other gas ratios, the corresponding refractive indices were 2.004∼2.006. The band gap energies of the ZnO thin film were 3.27∼3.33 eV depending on the O2/(Ar+O2) gas ratio and were little affected by the variation of the oxygen inflow volume.  相似文献   

5.
Aluminium oxide being environmentally stable and having high transmittance is an interesting material for optoelectronics devices. Aluminium oxide thin films have been successfully deposited by hot water oxidation of vacuum evaporated aluminium thin films. The surface morphology, surface roughness, optical transmission, band gap, refractive index and intrinsic stress of Al2O3 thin films were studied. The cost effective vapor chopping technique was used. It was observed that, optical transmittance of vapor chopped Al2O3 thin film showed higher transmittance than the nonchopped film. The optical band gap of vapor chopped thin film was higher than the nonchopped Al2O3, whereas surface roughness and refractive index were lower due to vapor chopping.  相似文献   

6.
Optical thin films have to fulfil high quality requirements, which can be achieved for example by reactive low voltage ion plating (RLVIP). But especially for applications in precision optics, additional treatments are necessary to reduce residual optical absorption and compressive stress arising in the coatings, and to enhance the stability of the coatings – specifically for laser applications. In practice, post deposition heat treatment and backside coatings are mostly used to overcome these problems. In order to provide alternative methods to handle the disadvantages of the RLVIP‐process, the idea was to replace the mentioned steps by a laser treatment. This means that a laser beam is directed onto the sample after deposition or even during the coating process. In this study, the influence of a high power CO2‐laser beam on thin Nb2O5‐ and HfO2‐films was investigated. The effects on the refractive index and the film thickness are presented for different energy densities of a TEA‐CO2‐laser beam (10.59μm). For Nb2O5‐films a thickness increase up to 12.2nm (6.4 %) and a refractive index decrease of 0.074 (3.1 %) were found. In case of HfO2 the values were 2.3nm (1.2 %) in thickness and 0.007 (0.3 %) in refractive index. From the observed changes also distinct impacts on the film stress can be expected. One intention of this research was also to call attention to an alternative technique for enhancement of thin film properties.  相似文献   

7.
The optical absorption of amorphous thin films of V2O5, SiO and of SiO/V2O5 is studied in the photon energy range 0.42 to 6.53 eV. The optical absorption edge of evaporated V2O5 films can be described by direct forbidden transitions while that of SiO films follows the non-direct transitions in k-space. The data of the SiO/V2O5 oxide mixtures are fitted to new values of the exponent in the well-known absorption equation and the corresponding optical band gaps are determined. Experimental data on the wavelength dependence of the refractive index of SiO films are presented. The dispersion of the refractive index follows a single oscillator model. The infrared spectra show that some bonding occurs between the two oxides so that the mixed dielectric system SiO/V2O5 cannot be considered as a simple physical mixture.  相似文献   

8.
Optical and mechanical properties of RLVIP HfO2 films In this paper HfO2‐films were deposited on unheated fused silica, borosilicate glass, and silicon wafer substrates by reactive low voltage ion plating (RLVIP). Optical film properties, i. e. refractive index and absorption as well as mechanical properties, particularly film stress, were investigated. Their dependence on deposition parameters, i. e. arc current and oxygen partial pressure was studied. The film refractive index was calculated from spectrophotometric measurements. The low absorption was determined by photothermal deflection spectrometry. Stress measurements were performed by bending disc method with uncoated and coated silicon wafer substrates.  相似文献   

9.
Optical waveguiding characteristics of amorphous TeO2−x films deposited by reactive sputtering under different O2:Ar gas mixtures are investigated on fused quartz and Corning glass substrates. Infra-red absorption band in the range 641-658 cm−1 confirmed the formation of a TeO bond, and a 20:80 O2:Ar gas mixture ratio is found to be optimum for achieving highly uniform and transparent films at a high deposition rate. As grown amorphous films exhibited a large band gap (3.76 eV); a high refractive index value (2.042-2.052) with low dispersion over a wide wavelength range of 500-2000 nm. Optical waveguiding with low propagation loss of 0.26 dB/cm at 633 nm is observed on films subjected to a post-deposition annealing treatment at 200 °C. Packing density and etch rates have been determined and correlated with the lowering of optical propagation loss in the annealed films.  相似文献   

10.
The deposition of rutile phase TiO2 films on unheated substrates by radio frequency magnetron sputtering is elaborated. The effect of total pressure and O2/Ar flow ratio on the growth of rutile film on different substrates has been studied thoroughly. The development of crystalline phase along with film deposition rate, surface morphology, optical transmission and band gap were also investigated for various growth conditions. It was found that the rutile phase crystallinity increased with decrease in total pressure and increase in O2 flow. In addition, the grown rutile films have interesting optical characteristics such as high transmittance (~ 85%) and high refractive index (~ 2.7) with a band gap about 3.2 eV.  相似文献   

11.
Copper oxide films were prepared by RF reactive magnetron sputtering at different percentages of oxygen pressure in a Ar:O2 reactive gas mixture at room temperature. The structural and optical properties of CuO films were investigated by a field emission scanning electron microscope, Raman spectroscopy, X-ray diffraction and UV–Visible spectrophotometer. The structure of the deposited film changed from a mixture of Cu2O + CuO phases to a pure CuO phase with an increase in oxygen percentage. In addition the crystallite size increased from 12 to 24 nm as the oxygen pressure percentage increased. The optical transmittance significantly increased with the increase of the oxygen pressure percentage and the optical band gap of the film increased from 1.33 to 1.41 eV. The film prepared with 30 and 40 % oxygen pressure showed (002) crystallographic orientation. The I–V characteristic of p-CuO/n-Si heterojunction diode was also found to be dependent on the oxygen pressure percentage.  相似文献   

12.
N. Matsunami  S. Ninad  T. Shimura  Y. Chimi 《Vacuum》2008,82(12):1482-1485
We have grown silicon nitride (Si3N4) films on SiO2-glass and R-Al2O3 substrates by using reactive RF magnetron sputtering deposition methods with N2 pure gas and N2 + Ar mixture gas. The film composition, thickness and impurities have been examined by ion beam analysis. It is shown that the films have stoichiometric composition and are free from Ar contamination, when N2 gas was used for the film deposition. Effects of impurities on the film properties, e.g., optical properties will be discussed.  相似文献   

13.
V2O5 thin films were deposited by reactive DC-diode sputtering technique in a mixed atmosphere of O2/Ar gas at room temperature from a high purity target of 99.99% vanadium. For the investigation, the thickness of the films and the O2/Ar ratio during the sputtering process were the parameters. The sputtering rate of the V2O5 films dramatically decreases with increasing the O2/Ar ratio. By X-ray diffraction it was found that films sputtered with 1% O2/Ar ratio grow preferentially in two orientations: the 200 and the 001 orientation. The increase of the O2/Ar ratio enhances the growth preferentially in the c-axis (001) and strongly decreases the growth in the a-axis (200) direction. The scanning electron microscope pictures confirm these results. In the visible region the optical transmittance is increased with increasing the O2/Ar ratio in the sputter gas. Additionally, the optical band gap is slightly larger for the films sputtered with an O2/Ar ratio higher than 5%. Beyond a thickness of about 220 nm and an O2/Ar ratio of 10% the electrical sheet resistance of the films increases dramatically. During the insertion/extraction of hydrogen ions, the change in the optical transmission was investigated. The gasochromism of the V2O5 films was explained by use of the Infra Red (IR) measurements during the insertion/extraction of hydrogen ions.  相似文献   

14.
Titanium dioxide (TiO2) films have been successfully deposited on metal alloy substrates by radio-frequency magnetron reactive sputtering in an Ar+O2 gas mixture. The effects of gas total pressure on the structure and phase transition of TiO2 films were studied by X-ray diffraction and Raman spectra. It is suggested that the film structure changes from rutile to anatase while work gas total pressure changes from 0.2 to 2 Pa. The structure of TiO2 films is not affected by the film thickness.  相似文献   

15.
The optical absorption spectra of evaporated V2O5 and co-evaporated V2O5/B2O3 thin films have been studied. For higher photon energies, the absorption is found to be due to a direct forbidden electronic transition process from the oxygen 2p band to the vanadium 3d band in a similar way to that observed in crystalline V2O5. The exponential behaviour of absorption edge for lower photon energies is attributed to the electronic transitions between the tailed-off d-d states corresponding to V4+ ions. For co-evaporated V2O5/B2O3 films the optical energy gap is observed to increase with the increase in V2O5 content of the composite films.  相似文献   

16.
Preparation of TiO2 and SiO2 films for optical applications was attempted using conventional rf magnetron sputtering in the sputtering ambient with various O2/Ar+O2 ratios and at substrate temperatures between room temperature and 400 °C. X-ray photoelectron spectroscopy (XPS) and optical spectroscopy investigations indicated that oxygen addition in the sputtering ambient was essential for growing TiO2 films with stoichiometric compositions and good transmittance, while SiO2 films had a stoichiometric composition of O/Si ratio=2.1-2.2 and were highly transparent in the visible wavelength region, independent of gas composition in the growing ambient. It was also identified from scanning electron microscope (SEM), atomic force microscope (AFM) and Fourier transform infrared spectroscopy (FTIR) measurements that the structural characteristics of both TiO2 and SiO2 films were significantly improved with O2 addition in the sputtering ambient, showing smoother surface morphologies and higher resistances to water absorption when compared with films grown without O2 addition. Heating of the substrate between 200 and 400 °C considerably increased the refractive index of TiO2 layers, resulting in dense structures along with an improvement of crystallinity. For optical applications, AR coatings composed of 2-4 multi-layers on glass were designed and manufactured by stacking in turn the SiO2 and TiO2 films at room temperature and O2/Ar+O2=10%, and the performance of the produced coatings was compared with simulation results.  相似文献   

17.
Thin films (30 to 80 nm) of refractory tantalum metal were successfully sputter-deposited on uniformly deformable fluoropolymer and polyimide substrates in stress free form. These films were later anodized into amorphous Ta2O5 which is a non-porous (barriertype) oxide with excellent corrosion resistant properties. X-ray photo-emission spectroscopy studies were carried out on tantalum and Ta2O5 to determine the chemical composition and oxidation states of elements. Thin tantalum and Ta2O5 films on fluoropolymer substrates contained fluorine as an impurity while similar films on polyimide substrate contained no fluorine and, in general, fewer impurities. Both thin tantalum films and the corresponding anodic oxides, when deformed in tension to 10% strain, exhibited the expected ductile behaviour of metals where slip bands were observed in the electron microscope. In some cases, minor cracks were observed in the deformed anodic films due to suspected local detachment of the film from the substrate.  相似文献   

18.
S.G. Yoon  S.M. Kang  S.-W. Kim 《Thin solid films》2008,516(11):3582-3585
The optical properties and intrinsic stress of Ta2O5 thin films deposited by dual ion beam sputtering (DIBS) were studied as a function of the assist ion beam voltage (250-650 V). When the assist ion beam voltage was in the range of 350-450 V, the transmittance at the quarter-wave point reached its highest value (lowest absorption). The refractive index increased to 2.185 as the assist ion beam voltage increased from 250 to 350 V, but decreased as the assist ion beam voltage was further increased from 350 to 650 V.  相似文献   

19.
Thin films of Ta2O5, Nb2O5, and HfO2 were deposited by reactive-low-voltage-ion-plating (RLVIP) on unheated glass and silicon substrates. The film thickness was about 200 nm. Optical properties as well as mechanical film stress of these layers were investigated in dependence of various deposition parameters, i.e. arc current and oxygen partial pressure. For an arc current in the range between 40 and 50 A and an oxygen partial pressure of at least 11 · 10− 4 mbar good results were obtained. The refractive index and film thickness were calculated from spectrophotometric transmission data using the Swanepoel theory. For example at 550 nm wavelength the refractive index for thin RLVIP-Nb2O5-films was found to be n550 = 2.40. The optical absorption was obtained by photo-thermal deflection spectrometry. For the investigated materials absorption coefficients in the range of k = 5 · 10− 4 at 515 nm wavelength were measured. The mechanical film stress was determined by measuring the difference in bending of silicon substrates before and after the deposition process. For dense films, i.e. no water vapour sorption on atmosphere, the mechanical film stress was always compressive with values of some hundred MPa. In case of films deposited with higher arc currents (Iarc > 60A) and lower oxygen pressure (< 15 · 10− 4 mbar) the influence of a post deposition heat treatment at 350 °C for 4 h on air was also investigated. For these films the properties could clearly be improved by such treatment. However, by using lower arc currents and higher oxygen partial pressure during the ion plating process, immediately dense and environmental stable films with good optical as well as mechanical properties could be achieved without post deposition heat treatment. All the results obtained will be presented in graphs and diagrams.  相似文献   

20.
《Materials Letters》2007,61(11-12):2460-2463
Ga-doped zinc oxide (ZnO:Ga) transparent conductive films with highly (002)-preferred orientation were deposited on glass substrates by DC reactive magnetron sputtering method in Ar + O2 ambience with different Ar/O2 ratios. The structural, electrical, and optical properties were investigated by X-ray diffraction, Hall measurement, and optical transmission spectroscopy. The resistivity and optical transmittance of the ZnO:Ga thin films are of the order of 10 4 Ω cm and over 85%, respectively. The lowest electrical resistivity of the film is found to be about 3.58 × 10 4 Ω cm. The influences of Ar/O2 gas ratios on the resistivity, Hall mobility, and carrier concentration were analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号