首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
砂砾石面板堆石坝流变特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以乌鲁瓦提砂砾石面板堆石坝为例,分析砂砾石面板坝在考虑流变和不考虑流变情况下坝体在竣工期和蓄水期的位移和应力分布规律,总结流变效应对坝体应力和变形的影响。计算结果表明:计入流变影响后坝体竖向位移和水平位移较未计入流变效应结果都有所增大,大主应力和小主应力也有所增加;从坝体沉降历时曲线和流变附加节点荷载计算结果可以看出,砂砾石料的变形主要在施工期完成,在蓄水后一年流变变形基本结束坝体位移趋于稳定,且计入流变的计算结果与坝体实际检测结果相近。因此,在进行砂砾石面板堆石坝坝体应力变形计算时考虑砂砾石的流变效应是必要的。  相似文献   

2.
为研究库水位骤降对于高面板堆石坝面板脱空的影响规律,通过系统分析与比较,选择了面板与坝体材料的本构模型以及二者之间的接触面模型,分析提出了大坝施工加载及蓄水过程的模拟方法以及面板脱空的模拟方法。以某面板堆石坝为例,按照不同的库水位骤降速度与骤降幅度制定4种方案,分别进行大坝的三维有限元应力变形计算以及脱空模拟。然后通过对比分析4种计算方案的计算结果,系统总结库水位骤降速度与骤降幅度对面板堆石坝面板应力变形及面板脱空的影响规律。结果表明:在库水位下降幅度一定的条件下,随着水位下降速度的减小,面板的脱空值有所减小;在库水位下降速度一定的条件下,随着水位下降幅度的减小,面板的脱空值也相应减小。因此,在实际面板堆石坝工程中,需要控制库水位的骤降速度与骤降幅度,以防止面板脱空现象的发生。  相似文献   

3.
针对应用更为广泛的中厚覆盖层上中低面板堆石坝变形特性进行了有限元分析,研究了面板堆石坝竣工期及蓄水期的堆石体及面板的变形特性,计算结果表明:相比于竣工期,蓄水期坝体最大竖向位移,向下游的水平位移,大坝大、小主应力及应力水平均有所增加,其中以大坝水平位移增加最为明显,约增加1倍左右,竖向位移增加幅度约为8%,大、小主应力增加10%~20%,应力水平增加约50%。  相似文献   

4.
本文以某混凝土面板堆石坝工程为研究对象,基于ABAQUS有限元分析软件建立堆石坝三维有限元分析模型,利用该平台UMAT自定义子程序模块用邓肯E-B材料模型定义坝体填筑材料属性,通过对三维有限元模型施加不同高度的静水压力来模拟堆石坝蓄水过程,对完建期大坝蓄水过程中坝体的应力及变形规律进行研究。结果表明:当坝前水深大于35m时,最大主拉应力值明显增大,正常蓄水位工况下最大主拉应力值达到0.51MPa。与横河向位移和竖向位移相比,堆石坝蓄水过程能够引起较大的顺河向位移,且随着坝前水深的增加,顺河向位移最大值位置也逐渐发生改变。  相似文献   

5.
为研究水位波动下大坝内力及变形规律,基于数值模拟法分析了防渗墙在水位上升和下降工况下防渗墙的变形规律,结果表明:蓄水前后防渗墙的水平位移变化趋势相同,其中蓄水前后墙顶的最大位移分别为110 mm和220 mm。此外,蓄水对墙体的垂直变形影响不大;防渗墙上游面和下游面最大主应力随高程的增大而先增大后减小,不同工况下墙体的最大应力小于混凝土的容许强度;随弹性模量的增大,墙体变形随混凝土弹性模量的增大而减小,墙体主应力随混凝土弹性模量增大而增大。关于防渗墙的选取要综合考虑工程地质条件及坝体形式等因素,合适的混凝土弹性模量可以降低墙体的最大应力。  相似文献   

6.
本文结合福建南安坂头水库大坝防渗墙工程实例,针对低弹模塑性混凝土的特点,对修筑塑性混凝土防渗墙前后的坝体进行了渗流分析,并采用非线性邓肯—张(E—B)模型研究了大坝防渗墙在一定水位下的应力变形特性。结果表明:低弹塑性混凝土防渗墙具有良好的防渗性能;修建墙体后坝体蓄水期垂直位移分布规律与竣工期相似,水平位移有向下游的趋势,坝体蓄水期大小主应力等值线趋势基本与竣工期相似;低弹塑性混凝土防渗墙墙体拉应力随混凝土弹性模量的增大而增大,最大拉应力均位于259.00m高程左右。  相似文献   

7.
中厚覆盖层上中低面板堆石坝应力变形分析   总被引:1,自引:0,他引:1  
在中厚覆盖层上修建中低面板堆石坝目前较为普遍,其应力变形特性与深厚覆盖层上修建的高面板坝有较大差异,因此有必要进行研究。利用目前应用较为广泛的邓肯-张E-B模型,采用二维有限元分析法针对位于宽河谷中的双溪口面板堆石坝竣工期及蓄水期的堆石体及面板的应力变形特性进行研究。结果表明:相比竣工期,蓄水期坝体沉降、向下游的水平位移、大坝大小主应力、应力水平及面板挠度均有所增加,其中以面板挠度及大坝水平位移增加最为明显,挠度增加了16.61 cm,水平位移增加约1倍,沉降增加幅度约为8%,大、小主应力增加10%~20%,应力水平增加约50%。大坝在竣工期及蓄水期的应力及变形均在允许范围内,大坝运行正常。  相似文献   

8.
狭窄河谷中的高面板堆石坝长期应力变形计算分析   总被引:1,自引:1,他引:0  
根据已建面板堆石坝的竣工后沉降变形规律和室内大型三轴流变试验结果,提出了堆石体长期变形流变模型.对建设在狭窄河谷中的九甸峡混凝土面板堆石坝进行了三维应力变形分析,考察了三维效应、堆石体流变等因素对大坝长期应力变形特性的影响.结果表明,狭窄河谷岸坡对坝体存在拱效应,减小坝体应力,同时,由于右岸坡度缓于左岸,右岸侧坝体较左岸侧存在更大的朝向河谷中心的位移.拱效应也阻碍了面板的弯曲和沉降变形,使靠近岸坡的面板接缝拉开和错动,并可能导致河床段面板中上部发生挤压破坏.坝体流变变形增大了面板挤压破坏的可能性.库水推力导致面板在挠曲的同时发生顺岸坡向拉伸,坝体的后期流变变形则可减小或改变面板的拉伸状态.  相似文献   

9.
混凝土面板坝面板变形模式与水平向挤压破损研究   总被引:1,自引:1,他引:0  
研究了混凝土面板在横断面内的变形模式和概化方法,探索了面板变形与面板坡向应力的关系和面板坡向应力的产生机制,揭示了时间、库水位等外部条件对面板坡向应力变形的影响模式,发现坝体变形导致的面板顺坡向挤压或拉伸是面板应力的主要来源。以三板溪面板堆石坝为例,研究了面板水平向破损原因,坝体较大的流变变形引起的面板顺坡向变形是面板较大坡向应力的主要来源,面板在库水推力作用下的局部弯曲变形、一期面板先期浇筑后坝体沉降的影响、特殊地形导致的面板水平向高应力以及垫层亏坡等造成的面板既有弯曲等都增大了面板坡向应力,并导致面板在结构存在缺陷的一、二期面板施工缝处发生破损。  相似文献   

10.
天生桥一级水电站面板坝坝体变形特征   总被引:4,自引:0,他引:4  
天生桥一级水电站混凝土面板堆石坝施工期和初蓄期坝体的沉降、水平位移、坝体与面板的脱空、上游坝坡裂缝、混凝土面板的变形和变位、坝体表面变形等变形特征 ,既有堆石坝的共同特征 ,也有其自身的特征。对其进行观测、分析研究 ,对混凝土面板堆石坝的设计和施工有一定的参考价值。  相似文献   

11.
分析总结国内外已建面板堆石坝在坝体变形控制、渗流控制等方面的成果,研究了混凝土面板接缝处挤压破损处理措施。在面板接缝处有填缝材料的情况下,面板坝轴向的相向位移明显增大,可见填缝材料使接缝保留了一定的变形能力,吸收了大量的挤压位移。使用钢度越小的柔性填料在极限范围内可吸收更多的挤压位移,但随垫层料侧向位移和面板法向分布力的增大,接缝处挤压位移相对于刚度较大的填料来说增长较快。达到压缩变形极限后,接缝处坝轴向相向位移超过0.5倍初始缝宽,面板后续的挤压应力增长较快,而轴向变形逐渐变小。钢度较大的填料则不容易发生变形,随着垫层料侧向位移和面板法向分布力的增大,相对于柔性填料其不容易达到压缩极限而发生硬化。  相似文献   

12.
采用邓肯-张E-B非线性弹性模型,利用数值计算方法,对某堆石坝在施工和蓄水期的应力、变形进行了计算分析,得出了堆石体和面板的最大变形值及其发生位置。结果表明:蓄水对混凝土面板堆石坝的水平位移影响较小;坝体在竣工期和正常蓄水期两种工况下面板的最大挠度均发生在上游坝坡和堆石压重体的交界处,应力总体较小,大坝稳定性良好。  相似文献   

13.
彭成山  陈曦  黄露剑 《人民黄河》2013,35(6):107-109
混凝土面板堆石坝最重要的组成部分是堆石体,堆石体的应力变形程度是影响工程稳定和安全的关键。对某水库面板堆石坝采用大型计算软件ADINA进行三维非线性有限元分析,模拟计算了竣工期坝体的3个典型断面的应力变形情况。结果表明,坝体的应力、位移分布规律较好,变形值都在允许范围内;断层只对坝基的应力分布形态有影响,对坝体的应力、变形影响较小。  相似文献   

14.
廖瑜  余定仙 《人民珠江》2023,(S2):232-237
在各种荷载和环境因素的长期作用下,风化料坝体堆石随时间逐渐发生变形,过大的变形影响大坝安全稳定。为研究沥青混凝土心墙风化料坝在运行期较长时间的坝体稳定性问题,依托工程实例中叶水库沥青混凝土心墙风化料坝,基于三维流变分析Burgers模型,模拟大坝在蓄水后运行期10 a的流变过程,计算流变位移及应力变化。结果表明:竖向最大流变位移为25.37 mm,发生在河床段坝顶;水平向最大流变位移为9.48 mm,发生在左岸坝肩坝顶位置;大主应力极值、小主应力极值相比初次蓄水期增加7.75%、3.79%。坝体流变位移在前3 a增加较快,进入第3~10 a后,流变位移增量逐渐趋于稳定。综上,中叶水库大坝在运行期的10 a内流变变形较小,应力增加较小,沥青混凝土心墙风化料坝的流变规律与堆石坝流变规律基本一致,同时说明大坝是安全稳定的。  相似文献   

15.
为研究塑性混凝土心墙坝的应力变形特性,通过选取合适的本构模型、接触单元、施工过程和蓄水过程模拟方法等,结合工程实际,运用三维非线性有限元法对大坝应力变形进行计算分析。研究结果表明:在竣工期和蓄水期,坝体的水平位移及垂直位移的分布特征与一般均质土坝一致;大坝的大主应力均为压应力,从坝面向坝内应力逐渐增大,且最大值发生在坝体底部心墙附近;小主应力除局部存在较小的拉应力外,其余均为压应力。  相似文献   

16.
《人民黄河》2016,(9):88-91
为校核胶凝砂砾石坝的应力及变形状况,研究坝高、边坡变化对坝体应力及位移的影响。结合胶凝砂砾石坝本构模型,以非线性有限元方法研究不同坝高及边坡对坝体应力及位移的影响。结果表明:胶凝砂砾石坝的大、小主应力均随着坝高的增大而增大,最大大主应力出现在坝基面中部;坝体小主应力等值线在下游分布大体与坝体边坡平行,小主应力的高应力区分布在上游处,且坝踵处拉应力随边坡的变陡而增大。坝体的最大水平位移与最大垂直位移均随坝高的增大而增大;随着坝坡的变陡,坝体最大水平位移增大,垂直位移等值线向下游移动。  相似文献   

17.
吉林台一级水电站混凝土面板堆石坝的坝体和面板在施工期及蓄水期的变形监测数据显示:坝体最大沉降量为77.1 cm,最大沉降率为0.948%。经分析得知,沉降主要大受坝填筑材料和水库蓄水的影响,且混凝土面板的垂直接缝、周边缝、钢筋应力、挠曲变形随水位抬升呈规律性变化,并与坝体内部变形监测数据相吻合。该监测数据为分析整体大坝变形形态提供了依据。  相似文献   

18.
利用三维有限元方法,对苏阿皮蒂水利枢纽泄洪底孔坝段在竣工期和运行期进行了四种工况的数值模拟分析,得到了坝体结构的应力变形情况。由计算结果可知,竣工期在自重荷载作用下,整个坝体往上游方向发生位移,位移自下而上逐渐增大;运行期受上游水压力和地震惯性力作用,整个坝体往下游方向发生位移,位移自下而上逐渐增大;四种工况下,坝体位移分布连续,最大位移均较小,变形满足要求;竣工期和运行期的坝体结构、坝踵、坝趾应力均满足重力坝设计规范要求。  相似文献   

19.
依据非线性弹性K-G模型理论对天池上水库面板堆石坝进行了应力变形分析。首先采用CAD图形和程序控制相结合方法建立坝体与地基模型,考虑了断层构造和岸坡变化,得到了较为精细的三维有限元模型。然后在模型计算中采用了施工逐级加载的方法对坝体进行了模拟,应用修正后的分级加载位移变形公式,对竣工期和正常水位蓄水期的应力变形进行三维有限元分析,得出了两种工况下断层对该高面板坝应力变形影响一般规律。  相似文献   

20.
徐泽平  陆希  翟迎春  严祖文  姬阳  徐耀 《水利学报》2022,53(12):1397-1409
为深入了解河谷地形因素对混凝土面板堆石坝应力变形特性的影响,采用一个典型的混凝土面板堆石坝三维有限元模型进行了不同岸坡坡度与河床宽度等影响因子的分析研究,并在总结已有相关研究成果的基础上,结合工程实例,探讨了改善峡谷地区混凝土面板堆石坝应力变形特性的工程措施。研究成果表明:河谷地形对大坝的作用主要表现在岸坡对坝体和面板的约束及顶托作用,这种作用随大坝长高比的增加而减弱。对于修建于狭窄河谷中的面板坝,其堆石体位移梯度和面板的压应力数值相对较大。工程上可采取提高堆石体压实密度,设置岸坡增模堆石区,以及合理确定面板浇筑时机和设置可吸收变形的面板纵缝填充材料等措施,以控制坝体变形并改善面板的应力状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号