首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
某综合办公楼采用粘滞阻尼器的消能减震设计   总被引:4,自引:0,他引:4  
介绍了高烈度区某 1 2层综合办公楼采用粘滞阻尼器的消能减震设计。设计中 ,在结构原拟设剪力墙的位置设置单斜撑粘滞阻尼器消能支撑 ,所采用的粘滞阻尼器为具有自主知识产权的速度线性相关型粘滞阻尼器。时程分析结果表明 ,粘滞阻尼器可大量耗散地震动能量 ,有效降低结构在地震作用下的振动反应。  相似文献   

2.
采用粘滞流体阻尼器的工程结构减振设计研究   总被引:31,自引:2,他引:29       下载免费PDF全文
本文在对不同结构构造的粘滞流体阻尼器的耗能原理进行分析研究的基础上,研制了一种性能良好的阻尼器──双出杆型粘滞流体阻尼器(专利号ZL00219648.4)。试验研究表明,研制的流体阻尼器是一种无刚度的速度相关型阻尼器,阻尼器的阻尼力与活塞的运动速度近似呈线性关系。介绍了工程结构采用粘滞流体阻尼器的减振设计原理,对一栋框架结构建筑进行了减振计算。计算表明,流体阻尼器可有效地降低结构的振动反应,是一种性能良好的消能减振装置。  相似文献   

3.
The wind‐induced vibrations of super tall buildings become excessive due to strong wind loads, super building height and high flexibility. Tuned mass dampers (TMDs) and tuned liquid column dampers (TLCDs) have been widely used to control vibrations for actual super tall buildings for decades. To fully use both the economic advantage of the TLCD system and the high efficiency of the TMD system, an innovative supplemental damping system including both TLCD and TMD and called combined tuned damper (CTD), which can substantially decrease the cost of the damper, was proposed to control the wind‐induced vibrations of tall buildings. The governing equations are generated for the motion of both the primary structure and the CTD and solved to anticipate the dynamic response of the CTD‐structure system. Moreover, an optimal design method of human comfort performance is proposed, in which the life cycle cost of the damper‐structure system is considered as the quantitative index of the performance. The life cycle cost includes the initial cost, the maintenance cost and the failure cost. The failure cost can be calculated using the vibration‐sensation rate model, which is based on the Japanese code AIJES‐V001‐2004. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
根据双轴对称双塔连体结构在水平地震作用下的受力和变形特点,在连体位置设置斜向粘滞流体阻尼器对结构进行消能减震。分析了结构各种响应随阻尼系数的变化情况,结果表明存在一个最优的阻尼系数使得结构的响应取得最小值。在对阻尼系数进行优化的基础上,详细研究了结构在小震和大震下的减震效果,计算表明,在采用最优阻尼系数的条件下,结构的最大层间剪力、层间相对位移和楼层位移等各指标都有较好的减震效果。但在大震作用下,由于结构进入塑性后本身的阻尼比增加了,阻尼器的耗能比例相对降低,其减震效果没有小震时明显。  相似文献   

5.
This paper presents the results of an experimental study of the seismic response of buildings with supplemental fluid damping devices. These devices operate on the principle of fluid flow through orifices specially shaped so as to produce damping forces proportional to the velocity, i.e. the devices operate as linear viscous dampers. The experimental results demonstrate that the addition of fluid dampers to the tested steel model structure resulted in reductions of interstory drifts, floor accelerations and story shear forces by factors of two to three in comparison with the response of the same structure without the dampers.  相似文献   

6.
A series of large‐scale shaking table tests are conducted on tall buildings with and without energy dissipation devices on soft soils in pile group foundations, representing pile‐soil‐structure interaction (PSSI) system and the corresponding fixed‐base situations. The superstructure is a 12‐story reinforced concrete (RC) frame. The dynamic characteristics of the test models show that the frequencies decrease and the damping ratio increase in PSSI system by comparison with the fixed‐base structures. The mode shapes of PSSI system are different from that under fixed‐base condition, and the mode shapes of structure without dampers change greater than that with energy dissipation devices under various white noises. An improved method for structural dynamic characteristics, considering the impedance function of piles, is developed to address the issue of modal parameters with PSSI effect. In addition, the structural dynamic parameters of the large‐scale shaking table tests are identified using the modification method and other regulation methods, demonstrating that the improved approach is highly accurate and effective. Subsequently, a design procedure for viscous dampers of structures with PSSI effect is presented based on the dynamic characteristics of the system. Finally, the dynamic responses of the structure with viscous dampers in the practical engineering are decreased effectively, indicating the good performance of designed viscous dampers. The numerical results also show that the damping efficiency of interstory drift is larger than the acceleration and interstory shear force. Therefore, the improved modal parameters method, validated through a series large‐scale shaking table tests, is applicable for identifying dynamic characteristics of pile‐soil‐structure with energy dissipation devices system. The design procedure of viscous dampers, proved by a reinforced concrete frame structure located on a practical Shanghai soft site, can be employed to design the viscous dampers considering seismic PSSI effect.  相似文献   

7.
在连接体位置设置粘滞液体阻尼器对非对称双塔连体结构进行消能减震,对粘滞液体阻尼器设置的位置和阻尼系数进行了优化并对连体结构进行时程分析.计算结果表明,当阻尼器选择合适的安装位置和优化阻尼系数时,粘滞阻尼器可大量耗散地震能量,能够有效降低结构在地震作用下的振动反应.  相似文献   

8.
半柔性悬挂减振结构体系地震反应分析   总被引:1,自引:1,他引:1       下载免费PDF全文
针对一种新型高层建筑半柔性悬挂结构体系提出阻尼减振控制的方案。首先,阐述了结构体系构建方案及优越性;其次,以主体结构的时程响应最大值最小为控制目标,对粘滞流体阻尼器的阻尼系数进行优化分析;最后,基于最优的阻尼器参数,对半柔性悬挂减振结构与普通悬挂抗震结构进行了时程对比分析。结果表明:半柔性悬挂减振结构能够有效地消弱结构的峰值响应;存在最优的阻尼系数使得主体结构的顶点位移和基底剪力动力响应最小;悬挂楼段保持较小层间位移,有效发挥了各层阻尼器的效率,保护了非结构构件。  相似文献   

9.
在结构中如何确定阻尼器位置及相关参数是消能减震结构设计的关键问题.本文在仔细分析阻尼器参数特性的基础上,结合"择层设计"思想,提出了一种设置阻尼器消能减震的试算设计方法.如对于粘滞阻尼器,采用该方法可以快速确定阻尼器的位置、个数、粘滞阻尼系数和速度指数.计算实例表明,该方法简便有效,容易掌握.  相似文献   

10.
To evaluate different energy dissipation systems used to control wind-induced vibrations of a 456 m super-tall building in fluctuating wind excitations, the finite element (FE) method was employed to simulate the dynamic responses of the building. A series of wind tunnel pressure tests were conducted on a 1:450 scale model to determine the wind forces acting on the super-tall building. A FE model was also constructed and mass, damping and stiffness matrices were subsequently formulated as an evaluation model for numerical analysis. The evaluation model was further simplified to a state reduced-order system using the state order reduction method. Three different vibration control schemes, namely a tuned mass damper (TMD) system, a system containing only nonlinear viscous dampers and a hybrid control system combining TMD and viscous dampers, were examined through simulations with respect to their effectiveness in reducing the accelerations at the top of the building. Furthermore, a cost evaluation was conducted to determine the most economical structural design and vibration control scheme. The results show that the wind-induced vibrations of the analysed building can be controlled effectively by all the three examined schemes, while the hybrid control scheme and the scheme containing only viscous dampers further reduce the wind-induced vibration to satisfy a more stringent criterion for a six-star hotel. In addition, the hybrid vibration control scheme is also the most cost-effective among the examined schemes.  相似文献   

11.
In this paper, the effect of viscous dampers on reducing progressive collapse potential of steel moment frames was evaluated by nonlinear dynamic analysis. Parametric studies were conducted first to evaluate the effects of dampers installed in a steel beam‐column subassembly with varying natural period and yield strength on the reduction of progressive collapse potential. Then 15‐story moment‐resisting frames with three different span lengths were designed with and without viscous dampers, and the effect of viscous dampers was investigated by nonlinear dynamic analysis. According to the parametric study, the vertical displacement generally decreased as the damping ratio of the system increased, and the dampers were effective in both the elastic and the elasto‐plastic systems. It was also observed that the effect of the damper increased as the natural period of the structure increased and the strength ratio decreased. The analysis results of 15‐story analysis model structures showed that the viscous dampers, originally designed to reduce earthquake‐induced vibration, were effective in reducing vertical displacement of the structures caused by sudden removal of a first‐story column, and the effect was more predominant in the structure with longer span length. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
李坚  俞剑锋 《江苏建筑》2011,(3):21-24,30
文章介绍了某火车站高架候车大厅大跨度钢结构楼盖的消能减震设计.在楼盖指定钢梁的跨中安置TMD-粘滞流体阻尼器消能减振装置,消能减振装置包括TMD和粘滞阻尼器两部分,每个TMD由一个质量块和4个弹簧减振器组成,粘滞阻尼器选用无刚度的速度线性相关型阻尼器.分析计算表明,安装减振装置后,有效地削减了该楼盖的共振响应,所有工况...  相似文献   

13.
耗能减震技术通过在结构物的某些部位设置耗能装置,利用其局部变形提供附加阻尼,以消耗地震能量,减小主体结构地震反应,从而达到减震、控震的目的。北京汽车产业研发基地项目建筑造型较特殊,结构的扭转效应比较大,为了减小结构的地震响应,尤其是在罕遇地震下的响应,在关键部位布置了若干黏滞流体阻尼器。采用MIDAS软件对采用阻尼器后的耗能结构与初始结构进行计算比较。结果显示,黏滞流体阻尼器的采用有效控制了结构在地震作用下的响应。  相似文献   

14.
A novel viscous damped system and its principles are proposed in the paper. It is a novel viscous damped system with multilever mechanism that can improve the energy dissipation capacity of conventional viscous dampers. In order to compare the damping effects of the novel viscous damper with that of the conventional viscous damper, a shaking table test of a three‐story steel frame structure is performed. Testing results indicate that the novel viscous damped system is more efficient. The elastic time‐history analysis of a super high‐rise frame‐core tube structure is studied under the frequently occurring earthquake. Dynamic loads take two groups of ground motions with different period characteristics into account. Main response values such as base shear, interstory drift, and acceleration factor under long‐period ground motions are apparently larger than the seismic results due to standard ground motions. Responses between the undamped structure and the damped structure with conventional viscous dampers or the latest products are compared. It is concluded that the proposed viscous damped system can perform more effectively in reducing high‐rise structural responses subject to long‐period ground motions.  相似文献   

15.
The seismic design of optimal damped outrigger structures relies on the assumption that most of the input energy will be absorbed by the dampers, whilst the rest of the structure remains elastic. When subjected to strong earthquakes, nevertheless, the building structure may exhibit plastic hinges before the dampers begin to work. In order to determine to which extent the use of viscously damped outriggers would avoid damage, both the host structure's hysteretic behaviour and the dampers' performance need to be evaluated in parallel. This article provides a parametric study on the factors that influence the distribution of seismic energy in tall buildings equipped with damped outriggers: First, the influence of outrigger's location, damping coefficients, and rigidity ratios core‐to‐outrigger and core‐to‐column in the seismic performance of a 60‐story building with conventional and with damped outriggers is studied. In parallel, nonlinear behaviour of the outrigger with and without viscous dampers is examined under small, moderate, strong, and severe long‐period earthquakes to assess the hysteretic energy distribution through the core and outriggers. The results show that, as the ground motion becomes stronger, viscous dampers effectively reduce the potential of damage in the structure if compared to conventional outriggers. However, the use of dampers cannot entirely prevent damage under critical excitations.  相似文献   

16.
Fluid viscous dampers are proved to be effective for reducing the response of high‐rise buildings subjected to wind excitations so as to enhance structural habitability, which serves as a critical performance in serviceability design. High‐rise buildings attached with fluid viscous dampers, however, exhibit nonlinearity and even act as stiff systems in most cases of wind‐induced vibration mitigation. The traditional equivalent linearization methods employed in practices often fail to obtain an accurate solution. Equivalent linearization methods, including the energy‐dissipation equivalent linearization method and the statistical linearization technique, are first studied and validated in this paper by the backward difference formula, which was verified to be of high accuracy through the nonlinear dynamic analysis. The damping optimization for habitability control is then proceeded. Two families of serviceability criteria, the minimization of standard deviation of roof acceleration employed in traditional habitability analysis and the minimization of failure probability of roof acceleration proposed in the present study, are addressed. For the logical treatment of randomness inherent in wind excitations and its influence upon structural reliability, the probability density evolution method is employed. Numerical results reveal that the criterion of minimizing failure probability of roof acceleration has better performance in habitability enhancement.  相似文献   

17.
The approach of positioning energy dissipaters between adjacent structures can effectively prevent the collision of two adjacent buildings. For adjacent retrofitted structures, an effective strengthening approach that involves implementing energy‐dissipation measures both between and within buildings is proposed. This paper is based on the actual Shanghai ShiMao International Plaza. To avoid having to strengthen most of the structural members, the strengthening measure of energy dissipation is selected because of its construction cost and time constraints. This approach involves replacing several dampers between the adjacent structures and adding viscous damping walls in the retrofitted structure to reduce the seismic response of the retrofitted structure back to the original level. Additionally, a practical calculating method for the equivalent additional damping ratio for the adjacent structures connected by energy dissipaters is proposed. The results show that the effect of energy dissipation in the retrofitted structure is prominent and that the goal of indirect strengthening is achieved. The strengthening approach of energy dissipation and the calculating method of the equivalent additional damping ratio for adjacent structures provide a reference for similar engineering designs.  相似文献   

18.
The Hefei TV tower is taken as an analytical case to examine the control method with a fluid viscous damper under wind load fluctuation. Firstly, according to the random vibration theory, the effect of fluctuating wind on the tower can be modeled as a 19-dimensional correlated random process, and the wind-induced vibration analysis of the tower subjected to dynamic wind load was further obtained. On the basis of the others’ works, a bi-model dynamic model is proposed. Finally, a dynamic model is proposed to study the wind-induced vibration control analysis using viscous fluid dampers, and the optimal damping coefficient is obtained regarding the wind-induced response of the upper turret as optimization objectives. Analysis results show that the maximum peak response of the tower under dynamic wind load is far beyond the allowable range of the code. The wind-induced responses and the wind vibration input energy of the tower are decreased greatly by using a fluid viscous damper, and the peak acceleration responses of the upper turret is reduced by 43.4%.  相似文献   

19.
粘滞流体阻尼器用于建筑结构的减震设计原理与方法   总被引:3,自引:0,他引:3  
研究了粘滞流体阻尼器用于建筑结构消能减震设计的原理、分析方法。包括阻尼器的设置、消能支撑的型式、支撑钢杆的设计、抗震设防目标、消能减震建筑结构的特点。给出了消能减震结构的附加水平控制力、附加有效阻尼比、地震影响系数、阻尼矩阵的计算方法;介绍了振型分解反应谱法和直接动力时程分析法的设计计算要点。最后给出了采用粘滞流体阻尼器进行消能减震设计的实用设计步骤。  相似文献   

20.
消能减震技术比传统的抗震方法有较大的优势,其中粘滞阻尼器具有很好的减震效果,应用较为广泛;对某6层框架结构采用粘滞阻尼器进行消能减震设计,计算结果表明粘滞阻尼器对于控制结构层间位移角,基底剪力均有较好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号