首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the design problem of robust delay‐dependent ?? controller for a class of time‐delay control systems with time‐varying state and input delays, which are assumed to be noncoincident. The system is subject to norm‐bounded uncertainties and ??2 disturbances. Based on the selection of an augmented form of Lyapunov–Krasovskii (L‐K) functional, first a Bounded Real Lemma (BRL) is obtained in terms of linear matrix inequalities (LMIs) such that the nominal, unforced time‐delay system is guaranteed to be globally asymptotically stable with minimum allowable disturbance attenuation level. Extending BRL, sufficient delay‐dependent criteria are developed for a stabilizing ?? controller synthesis involving a matrix inequality for which a nonlinear optimization algorithm with LMIs is proposed to get feasible solution to the problem. Moreover, for the case of existence of norm‐bounded uncertainties, both the BRL and ?? stabilization criteria are easily extended by employing a well‐known bounding technique. A plenty of numerical examples are given to illustrate the application of the proposed methodology of this note. The achieved numerical results on the maximum allowable delay bound and minimum allowable disturbance attenuation level are exhibited to be less conservative in comparison to those of existing methods in the literature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This paper investigates the problem of robust ?? static output feedback controller design for a class of discrete‐time piecewise‐affine systems with norm‐bounded time‐varying parametric uncertainties. The objective is to design a piecewise‐linear static output feedback controller guaranteeing the asymptotic stability of the resulting closed‐loop system with a prescribed ?? disturbance attenuation level. Based on a piecewise Lyapunov function combined with S‐procedure, Projection lemma, and some matrix inequality convexifying techniques, several novel approaches to the static output feedback controller analysis and synthesis are developed for the underlying piecewise‐affine systems. It is shown that the controller gains can be obtained by solving a set of strict linear matrix inequalities (LMIs) or a family of LMIs parameterized by one or two scalar variables, which are numerically efficient with commercially available software. Finally, three simulation examples are provided to illustrate the effectiveness of the proposed approaches. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The problem of gain‐scheduled state feedback control for discrete‐time linear systems with time‐varying parameters is considered in this paper. The time‐varying parameters are assumed to belong to the unit simplex and to have bounded rates of variation, which depend on the values of the parameters and can vary from slow to arbitrarily fast. An augmented state vector is defined to take into account possible time‐delayed inputs, allowing a simplified closed‐loop analysis by means of parameter‐dependent Lyapunov functions. A gain‐scheduled state feedback controller that minimizes an upper bound to the ?? performance of the closed‐loop system is proposed. No grids in the parametric space are used. The design conditions are expressed in terms of bilinear matrix inequalities (BMIs) due to the use of extra variables introduced by the Finsler's lemma. By fixing some of the extra variables, the BMIs reduce to a convex optimization problem, providing an alternate semi‐definite programming algorithm to solve the problem. Robust controllers for time‐invariant uncertain parameters, as well as gain‐scheduled controllers for arbitrarily time‐varying parameters, can be obtained as particular cases of the proposed conditions. As illustrated by numerical examples, the extra variables in the BMIs can provide better results in terms of the closed‐loop ?? performance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
This paper considers the robust guaranteed cost control problem of two‐dimensional (2‐D) state‐delayed systems. First, the definition of guaranteed cost matrix is proposed and an upper bound of the cost function is given. Then, the guaranteed cost control problem is resolved. Furthermore, the minimum upper bound of the closed‐loop cost function is obtained by solving an optimization problem with LMIs' constraints. A numerical example demonstrates the effectiveness of our results.  相似文献   

5.
This paper investigates the problem of ?? filtering for discrete‐time linear systems with Markovian jumping parameters. It is assumed that the jumping parameter is available. This paper develops necessary and sufficient conditions for designing a discrete‐time Markovian jump linear filter which ensures a prescribed bound on the ?2‐induced gain from the noise signals to the estimation error. The proposed filter design is given in terms of linear matrix inequalities. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Motivated by a robust disturbance rejection problem, in which disturbances are described by an uncertain filter at the plant input, a convex solution is presented for the robust output feedback controller synthesis problem for a particularly structured plant. The uncertainties are characterized by an integral quadratic constraint (IQC) with general frequency‐dependent multipliers. By exploiting the structure of the generalized plant, linear matrix inequality (LMI)‐synthesis conditions are derived in order to guarantee a specified ??2‐gain or ??2‐norm performance level, provided that the IQC multipliers are described by LMI constraints. Moreover, it is shown that part of the controller variables can be eliminated. Finally, the rejection of non‐stationary sinusoidal disturbance signals is considered. In a numerical example, it is shown that specifying a bound on the rate‐of‐variation of the time‐varying frequency can improve the performance if compared with the static IQC multipliers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This paper deals with the problem of gain‐scheduled ??2 control for linear parameter‐varying systems. The system state–space model matrices are affinely parameterized and the admissible values of the parameters and their rate of variation are supposed to belong to a given convex bounded polyhedral domain. Based on a parameter‐dependent Lyapunov function, a linear matrix inequality methodology is proposed for designing a gain‐scheduled state feedback ??2 controller, where the feedback gain is a matrix fraction of polynomial matrices with quadratic dependence on the scheduling parameters. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The problem of robust absolute stability for time‐delay Lur'e systems with parametric uncertainties is investigated in this paper. The nonlinear part of the Lur'e system is assumed to be both time‐invariant and time‐varying. The structure of uncertainty is a general case that includes norm‐bounded uncertainty. Based on the Lyapunov–Krasovskii stability theory, some delay‐dependent sufficient conditions for the robust absolute stability of the Lur'e system will be derived and expressed in the form of linear matrix inequalities (LMIs). These conditions reduce the conservativeness in computing the upper bound of the maximum allowed delay in many cases. Numerical examples are given to show that the proposed stability criteria are less conservative than those reported in the established literatures.  相似文献   

9.
The problem of delay‐dependent robust stabilization for uncertain singular discrete‐time systems with Markovian jumping parameters and time‐varying delay is investigated. In terms of free‐weighting‐matrix approach and linear matrix inequalities, a delay‐dependent condition is presented to ensure a singular discrete‐time system to be regular, causal and stochastically stable based on which the stability analysis and robust stabilization problem are studied. An explicit expression for the desired state‐feedback controller is also given. Some numerical examples are provided to demonstrate the effectiveness of the proposed approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, an improved linear matrix inequality (LMI)‐based robust delay‐dependent stability test is introduced to ensure a larger upper bound for time‐varying delays affecting the state vector of an uncertain continuous‐time system with norm‐bounded‐type uncertainties. A quasi‐full‐size Lyapunov–Krasovskii functional is chosen and free‐weighting matrix approach is employed. Less restrictive sufficient conditions are derived for robust stability of time‐varying delay systems with norm‐bounded‐type uncertainties. Moreover, the investigation of the stabilization problem with memoryless state‐feedback control is presented such that the stabilizability criteria are obtained in terms of matrix inequalities, which can be solved via utilizing a cone complementarity minimization algorithm. Finally, the problem of output feedback stabilization for square systems is also taken into consideration. The output feedback stabilizability criteria are derived in the form of linear matrix inequalities, which are convex and can be easily solved using interior point algorithms. A plenty of numerical examples are presented indicating that the proposed stability and stabilization methods effectively improve the existing results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the problem of ?? filtering for a class of uncertain Markovian jump linear systems. The uncertainty is assumed to be norm‐bounded and appears in all the matrices of the system state‐space model, including the coefficient matrices of the noise signals. It is also assumed that the jumping parameter is available. We develop a methodology for designing a Markovian jump linear filter that ensures a prescribed bound on the ??2‐induced gain from the noise signals to the estimation error, irrespective of the uncertainty. The proposed design is given in terms of linear matrix inequalities. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, new approaches regarding H2 guaranteed cost stability analysis and controller synthesis problems for a class of discrete‐time fuzzy systems with uncertainties are investigated. The state‐space Takagi‐Sugeno fuzzy model with norm‐bounded parameter uncertainties is adopted. Based on poly‐quadratic Lyapunov functions, sufficient conditions for the existence of the robust H2 fuzzy controller can be obtained in terms of linear matrix inequalities (LMIs). Furthermore, a convex optimization problem with LMI constraints is formulated to design a suboptimal fuzzy controller which minimizes the upper bound on the quadratic cost function. The effectiveness of the proposed design approach is illustrated by two examples. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

13.
This paper proposes a method for robust state feedback controller design of networked control systems with interval time‐varying delay and nonlinearity. The key steps in the method are to construct an improved interval‐delay‐dependent Lyapunov functional and to introduce an extended Jessen's inequality. Neither free weighting nor model transformation is employed in the derivation of system stability criteria. It is shown that the maximum allowable bound on the nonlinearity could be computed through solving a constrained convex optimization problem; and the maximum allowable delay bound and the feedback gain of a memoryless controller could be derived by solving a set of linear matrix inequalities. Numerical examples are given to demonstrate the effectiveness of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
This paper investigates robust consensus for multi‐agent systems with discrete‐time dynamics affected by uncertainty. In particular, the paper considers multi‐agent systems with single and double integrators, where the weighted adjacency matrix is a polynomial function of uncertain parameters constrained into a semialgebraic set. Firstly, necessary and sufficient conditions are provided for robust consensus based on the existence of a Lyapunov function polynomially dependent on the uncertainty. In particular, an upper bound on the degree required for achieving necessity is provided. Secondly, a necessary and sufficient condition is provided for robust consensus with single integrator and nonnegative weighted adjacency matrices based on the zeros of a polynomial. Lastly, it is shown how these conditions can be investigated through convex programming by exploiting linear matrix inequalities and sums of squares of polynomials. Some numerical examples illustrate the proposed results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper the concept of maximal admissible set (MAS) for linear systems with polytopic uncertainty is extended to non‐linear systems composed of a linear constant part followed by a non‐linear term. We characterize the maximal admissible set for the non‐linear system with unstructured uncertainty in the form of polyhedral invariant sets. A computationally efficient state‐feedback RMPC law is derived off‐line for Lipschitz non‐linear systems. The state‐feedback control law is calculated by solving a convex optimization problem within the framework of linear matrix inequalities (LMIs), which leads to guaranteeing closed‐loop robust stability. Most of the computational burdens are moved off‐line. A linear optimization problem is performed to characterize the maximal admissible set, and it is shown that an ellipsoidal invariant set is only an approximation of the true stabilizable region. This method not only remarkably extends the size of the admissible set of initial conditions but also greatly reduces the on‐line computational time. The usefulness and effectiveness of the method proposed here is verified via two simulation examples.  相似文献   

16.
This paper revisits the problem of delay‐dependent robust ? filtering design for a class of continuous‐time polytopic linear systems with a time‐varying state delay. Based on a newly developed parameter‐dependent Lyapunov–Krasovskii functional combined with Projection Lemma and an improved free‐weighting matrix technique for delay‐dependent criteria, a new sufficient condition for robust ? performance analysis is first derived and then the filter synthesis is developed by using a simple matrix inequality linearization technique. It is shown that the desired filters can be constructed by solving a set of linear matrix inequalities. Finally, two simulation examples are given to show the effectiveness and less conservatism of the proposed method in comparison with the existing approaches. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
This paper considers linear time invariant systems with sector type nonlinearities and proposes regional ??2 performance analysis and synthesis methods based on the circle criterion. In particular, we consider the effect of non‐zero initial states and/or an ??2 disturbance inputs on the ??2 norm of a selected performance output. We show that both analysis and synthesis problems can be recast as linear matrix inequality (LMI) optimization problems, where, for synthesis, the outputs of the nonlinear elements are assumed available for control. Moreover, it is shown when the circle criterion does or does not help to improve the performance bound in robust control synthesis when compared with the existing linear analysis method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the ?? and l2l filtering problem is investigated for two‐dimensional (2‐D) discrete‐time linear parameter‐varying (LPV) systems. Based on the well‐known Fornasini–Marchesini local state‐space (FMLSS) model, the mathematical model of 2‐D systems under consideration is established by incorporating the parameter‐varying phenomenon. The purpose of the problem addressed is to design full‐order ?? and l2l filters such that the filtering error dynamics is asymptotic stable and the prescribed noise attenuation levels in ?? and l2l senses can be achieved, respectively. Sufficient conditions are derived for existence of such filters in terms of parameterized linear matrix inequalities (PLMIs), and the corresponding filter synthesis problem is then transformed into a convex optimization problem that can be efficiently solved by using standard software packages. A simulation example is exploited to demonstrate the usefulness and effectiveness of the proposed design method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we address the ?? model reduction problem for linear time‐invariant discrete‐time systems. We revisit this problem by means of linear matrix inequality (LMI) approaches and first show a concise proof for the well‐known lower bounds on the approximation error, which is given in terms of the Hankel singular values of the system to be reduced. In addition, when we reduce the system order by the multiplicity of the smallest Hankel singular value, we show that the ?? optimal reduced‐order model can readily be constructed via LMI optimization. These results can be regarded as complete counterparts of those recently obtained in the continuous‐time system setting.  相似文献   

20.
In this paper, we consider the ??‐filtering problem for singularly perturbed (two time‐scale) nonlinear systems. Two types of filters are discussed, namely, (i) decomposition and (ii) aggregate, and sufficient conditions for the solvability of the problem in terms of Hamilton–Jacobi–Isaac's equations (HJIEs) are presented. Reduced‐order filters are also derived in each case, and the results are specialized to linear systems, in which case the HJIEs reduce to a system of linear‐matrix‐inequalities (LMIs). Based on the linearization of the nonlinear models, upper bounds ε* of the singular parameter ε that guarantee the asymptotic stability of the nonlinear filters can also be obtained. The mixed ??2/??‐filtering problem is also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号