首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
River regulation is associated with vegetation encroachment and invasions of some non‐native species in the semi‐arid west. Shifts in the abundance of native and non‐native woody riparian species are an interplay of regulation, life history traits and an array of flow and physical environmental variables. We sought to compare plant densities and per cent cover of several invasive species over two time periods in a paired river study, contrasting three different degrees of regulation along reaches of the Green and Yampa rivers in Colorado and Utah, USA. We censused patches of non‐native plants and recorded per cent cover in quadrats along 171 river km. The upper Green (10.1 patches ha?1) had the highest invasive plant patch density followed by the lower Green (4.4 per ha) and the Yampa (3.3 per ha). Invasive species were present in 23%, 19% and 4% of sample quadrats, and an average of 0.28, 0.22 and 0.04 invasive species detected per square metre was recorded along the upper Green, lower Green and Yampa Rivers, respectively. Most species had significantly (p ≤ 0.02) higher percent cover on the upper Green than either or both the lower Green and the Yampa River. Whereas the less regulated river reaches maintain lower densities of invasive species than the most regulated reach, long‐term persistence of this pattern is still in question as some species patches showed notable increases on the Yampa and lower Green Rivers from 2002–2005 to 2010–2011. Although invasion is enhanced by flow regulation, life history traits of some species suggest invasion is likely, regardless of flow regulation. Published 2015. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

2.
Declines in cottonwood (Populus spp.) recruitment along alluvial reaches of large rivers in arid regions of the western United States have been attributed to modified flow regimes, lack of suitable substrate, insufficient seed rain, and increased interspecific competition. We evaluated whether and how these factors were operating during 1993–1996 to influence demographics of Fremont cottonwood (P. deltoides Marshall subsp. wislizenii (Watson) Eckenwalder) along reaches of the Green and Yampa Rivers near their confluence in northwestern Colorado. We examined seedling establishment, defined as survival through three growing seasons, at three alluvial reaches that differed primarily in the level of flow regulation: a site on the unregulated Yampa, an upper Green River site regulated by Flaming Gorge Dam, and a lower Green River site below the Green–Yampa confluence. Seed rain was abundant in all sites, and led to large numbers of germinants (first‐year seedlings) appearing each year at all sites. The regulated flow in the upper Green River reach restricted germination to islands and cut banks that were later inundated or eroded; no seedlings survived there. Mortality at the lower Green River site was due largely to desiccation or substrate erosion; 23% of 1993 germinants survived their first growing season, but at most 2% survived through their second. At the Yampa River site, germinants appeared on vegetated and unvegetated surfaces up to 2.5 m above base flow stage, but survived to autumn only on bare surfaces at least 1.25 m above base flow stage, and where at least 10 of the upper 40 cm of the alluvium was fine‐textured. Our studies of rooting depths and the stable isotopic composition of xylem water showed that seedlings in the most favorable locations for establishment at the Yampa site do not become phreatophytic until their third or fourth growing season. Further, the results of experimental field studies examining effects of shade and competition supported the hypothesis that insufficient soil moisture, possibly in combination with insufficient light, restricts establishment to unvegetated sites. Collectively, the demographic and experimental studies suggest that, in arid regions, soil water availability is at least as important as light level in limiting establishment of Fremont cottonwood seedlings. We hypothesize that in cases where arid land rivers experience large spring stage changes, recruitment is further constrained within bare areas to those sites that contain sufficient fine‐textured alluvium, saturated during the spring flood, to provide the flood‐derived soil moisture normally necessary for late‐summer seedling survival. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
River regulation induces immediate and chronic changes to floodplain ecosystems. We analysed both short‐term and prolonged effects of river regulation on the growth patterns of the keystone riparian tree species Fremont cottonwood (Populus deltoides ssp. wislizenii) at three upper Colorado River Basin rivers having different magnitudes of flow regulation. We compared cottonwood basal area increment on (i) the regulated Upper Green River below Flaming Gorge Dam; (ii) the adjacent free‐flowing Yampa River; and (iii) the partially regulated Lower Green River below their confluence. Our goal was to identify the hydrologic and climatic variables most influential to tree growth under different flow regimes. A dendrochronological analysis of 182 trees revealed a long‐term (37 years) trend of declining growth during the post‐dam period on the Upper Green, but trees on the partially regulated Lower Green maintained growth rates similar to those on the reference Yampa River. Mean annual, mean growing season, and peak annual discharges were the multicollinear flow variables most correlated to growth during both pre‐dam and post‐dam periods at all sites. Annual precipitation was also highly correlated with tree growth, but precipitation occurring during the growing season was poorly correlated with tree growth, even under full river regulation conditions. This indicates that cottonwoods rely primarily on groundwater recharged by river flows. Our results illustrate the complex and prolonged effects of flow regulation on floodplain forests, and suggest that flow regulation designed to simulate specific aspects of flow regimes, particularly peak flows, may promote the persistence of these ecosystems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The effects of river damming on geomorphic processes and riparian vegetation were evaluated through field studies along the regulated Green River and the free‐flowing Yampa River in northwestern Colorado, USA. GIS analysis of historical photographs, hydrologic and sediment records, and measurement of channel planform indicate that fluvial processes and riparian vegetation of the two meandering stream reaches examined were similar prior to regulation which began in 1962. Riparian plant species composition and canopy coverage were measured during 1994 in 36, 0.01 ha plots along each the Green River in Browns Park and the Yampa River in Deerlodge Park. Detrended correspondence analysis (DCA) of the vegetation data indicates distinctive vegetation differences between Browns Park and Deerlodge Park. Canonical correspondence analysis (CCA) indicates that plant community composition is controlled largely by fluvial processes at Deerlodge Park, but that soil chemical rather than flow related factors play a more important role in structuring plant communities in Browns Park. Vegetation patterns reflect a dichotomy in moisture conditions across the floodplain on the Green River in Browns Park: marshes with anaerobic soils supporting wetland species (Salix exigua, Eleocharis palustris, Schoenoplectus pungens, and Juncus nodosus) and terraces having xeric soil conditions and supporting communities dominated by desert species (Seriphidium tridentatum, Sarcobatus vermiculatus, and Sporobolus airoides). In contrast, vegetation along the Yampa River is characterized by a continuum of species distributed along a gradual environmental gradient from the active channel (ruderal species such as Xanthium struminarium and early successional species such as S. exigua, Populus deltoides subsp. wislizenii, and Tamarix ramossissima) to high floodplain surfaces characterized by Populus forests and meadow communities. GIS analyses indicate that the channel form at Browns Park has undergone a complex series of morphologic changes since regulation began, while the channel at Deerlodge Park has remained in a state of relative quasi‐equilibrium with discharge and sediment regimes. The Green River has undergone three stages of channel change which have involved the transformation of the historically deep, meandering Green River to a shallow, braided channel over the 37 years since construction of Flaming Gorge Dam. The probable long‐term effects of channel and hydrologic changes at Browns Park include the eventual replacement of Populus‐dominated riparian forest by drought tolerant desert shrublands, and the enlargement of in‐channel fluvial marshes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
After a long absence, beaver Castor fiber are rapidly returning to Europe. Their dam‐building and tree‐felling behaviour may have consequences for salmon Salmo salar and sea trout Salmo trutta management. In 2003 we investigated the parallel use of stream sections by beaver, sea trout and salmon and determined the potential hindrance that beaver dam‐building presented for reproducing salmon and sea trout along 65 km of the Numedalslågen River and tributaries, a major Norwegian catchment. We also surveyed landowner attitude to having beaver on salmon and sea trout streams. Most salmon spawned in the river and most sea trout in 51 tributaries. Nine of these tributaries also hosted spawning salmon. 15 (29%) of the 51 tributaries with spawning sea trout and six (67%) of the nine with spawning salmon had intermittently been occupied by beaver. Though beaver preferred to colonize the same sections of stream used for spawning, only 15% of the stream length navigable by salmon and sea trout on the 51 tributaries had actually been used by beaver, and only three colonies were occupied autumn 2003 (1 colony/25.0 km). Five dams were functioning during autumn 2003 on the 51 tributaries (1 dam/14.3 km). These potentially hindered sea trout and salmon from reaching 18% and 3%, respectively of their potential spawning habitat, though all dams were low (≤0.5 m). Though the autumn density of occupied beaver colonies along the river (1 colony/2.5 km) was 10.0 times the density on the 51 tributaries, no dams were built on the river. Thus most salmon reproduction in the catchment was unhindered by beaver. Nine of 14 landowners were unequivocally positive about having beaver together with salmon and sea trout. We conclude that the presence of beaver on similar catchments will likely have only an insignificant negative impact on the reproduction of sea trout and salmon. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The role of native trees, Fremont cottonwood (Populus fremontii) and Goodding willow (Salix gooddingii), in structuring the riparian small mammal assemblage on rivers in the American desert southwest is unclear. It is unknown, for example, whether these trees directly or indirectly provide the food or shelter necessary for the presence of any species. Because of the rapid and widespread decline of gallery forest, due in part to river regulation, the retention of remnant stands and replacement of lost stands are major regional conservation issues. To elucidate small mammal–forest linkages, we compared patterns of macrohabitat use among terrestrial small mammals at two rehabilitated and one unmanipulated alluvial floodplain site along the highly regulated lower Colorado River. We also compared current patterns to the Colorado River faunal associations Joseph Grinnell documented in 1910, prior to significant flow regulation. We used grid‐based, capture‐mark‐recapture techniques at two revegetation sites, each a mosaic of six distinct macrohabitats, including planted cottonwood/willow, to associate species with specific macrohabitats. We also trapped a ‘reference’ grid containing naturally regenerating cottonwood and willow at a site on the lower Bill Williams River floodplain. Despite very poor development of cottonwood plantings at one of the revegetated sites, each supported at least nine species and harbored all seven species that Grinnell associated with areas flooded nearly every year. The set of species Grinnell associated with cottonwood/willow stands (Peromyscus maniculatus, Reithrodontomys megalotis, and Sigmodon arizonae) was trapped at both revegetation sites but entirely absent at the reference site. The Bill Williams site may be inaccessible to Sigmodon, but the absence of the other two species is probably a consequence of differences in floodplain structure and functioning among the study sites as well as between the Bill Williams site and historic Colorado River riparian areas. Our data suggest the richness of the native lower Colorado River riparian small mammal assemblage is unrelated to the presence or absence of cottonwood/willow trees, but does depend in part upon the presence or absence of dense herbaceous vegetation. Resource managers attempting to rehabilitate degraded desert riverine ecosystems need to consider understory as well as overstory plant species in revegetation efforts. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Benthic macroinvertebrates were examined over a two-year period in nonregulated, regulated, and semiregulated reaches of the Clearwater River in northern Idaho. Macroinvertebrate communities in the nonregulated reach above Dworshak Reservoir were taxonomically diverse at all stations. In contrast, the macroinvertebrate community in the regulated reach of the North Fork of the Clearwater River (NFCR) was severely altered with high macroinvertebrate abundance and low taxa richness (2 to 8 taxa). Orthoclad chironomids dominated this reach composing between 68 and 99 per cent of total benthic invertebrate numbers. The mayfly Ephemerella infrequens was the only other macroinvertebrate to be abundant in the regulated reach. The major factors contributing to the simplified macroinvertebrate community are reduced habitat diversity, fluctuating water levels, altered thermal regime, and possibly an altered food supply. The effects of the dam were mitigated in the semiregulated Mainstem of the Clearwater River (MSCR) due to the merger of a nonregulated fork entering 2.5 km downstream from the dam. The macroinvertebrate community in the semiregulated MSCR was more complex than the regulated reach with a community structure resembling that found above the reservoir.  相似文献   

9.
Dam releases used to create downstream flows that mimic historic floods in timing, peak magnitude and recession rate are touted as key tools for restoring riparian vegetation on large regulated rivers. We analysed a flood on the 5th‐order Green River below Flaming Gorge Dam, Colorado, in a broad alluvial valley where Fremont cottonwood riparian forests have senesced and little recruitment has occurred since dam completion in 1962. The stable post dam flow regime triggered the development of novel riparian communities with dense herbaceous plant cover. We monitored cottonwood recruitment on landforms inundated by a managed flood equal in magnitude and timing to the average pre‐dam flood. To understand the potential for using managed floods as a riparian restoration tool, we implemented a controlled and replicated experiment to test the effects of artificially modified ground layer vegetation on cottonwood seedling establishment. Treatments to remove herbaceous vegetation and create bare ground included herbicide application (H), ploughing (P), and herbicide plus ploughing (H + P). Treatment improved seedling establishment. Initial seedling densities on treated areas were as much as 1200% higher than on neighbouring control (C) areas, but varied over three orders of magnitude among the five locations where manipulations were replicated. Only two replicates showed the expected seedling density rank of (H + P) > P > H> C. Few seedlings established in control plots and none survived 1 year. Seedling density was strongly affected by seed rain density. Herbivory affected growth and survivorship of recruits, and few survived nine growing seasons. Our results suggest that the novel plant communities are ecologically and geomorphically resistant to change. Managed flooding alone, using flows equal to the pre‐dam mean annual peak flood, is an ineffective riparian restoration tool where such ecosystem states are present and floods cannot create new habitat for seedling establishment. This problem significantly limits long‐term river and riparian management options. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
We developed a mass balance flow model to reconstruct unregulated daily peak flows in the National Wild and Scenic reach of the Missouri River, Montana. Results indicated that although the observed frequency of large peak flows has not changed in the post‐dam period, their magnitude has been reduced from 40 to 50% as a consequence of flow regulation. Reductions in the magnitude of these flows should reduce the expected frequency of large flood‐pulses over a longer time‐scale. Results of a two‐dimensional hydraulic model indicated that limited cottonwood (Populus deltoides subsp. Monilifera) recruitment occurs at relatively small peak discharges, but to maximize establishment of cottonwoods in the Wild and Scenic reach, a threshold of 1850 m3/s would be necessary at the Virgelle gauge. Floods of this magnitude or greater lead to establishment of cottonwood seedlings above the zone of frequent ice‐drive disturbance. Restoring the frequency, magnitude, duration and timing of these flood pulses would benefit important natural resource values including riparian cottonwood forests and native fish species in the upper Missouri River basin. However, efforts to naturalize flow must be made in the context of a water management system that was authorized and constructed for the primary purposes of flood control, power generation and irrigation. Using the synthesized flow model and flood damage curves, we examined six scenarios for delivering flows ≥1850 m3/s to the Wild and Scenic reach. Whereas some scenarios appeared to be politically and economically infeasible, our analysis suggested that there is enough operational flexibility in the system to restore more natural flood pulses without greatly compromising other values. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

11.
Under pre‐settlement conditions the Yakima River in Washington state, USA was characterized by multiple channels, complex aquifers and extensive riparian cottonwood forests. Subsequent implementation of headwater dams to supply irrigation water has altered river and floodplain processes critical to the cottonwoods and associated riparian vegetation. In this study, we analysed hydrology and floodplain forests and especially the dominant black cottonwoods (Populus trichocarpa) along sequential reaches of the Yakima River. Elevations were surveyed and vegetation inventoried along cross‐sectional belt transects, and cottonwood tree ring interpretations investigated historic associations between river hydrology and cottonwood establishment and growth. We analysed hydrographs relative to the apparent episodes of cottonwood recruitment and applied a quantitative model for seedling colonization that required: (1) floods, disturbance flows to produce barren nursery sites, and subsequent flows for seedling (2) establishment and (3) survival. In contrast to earlier conditions, flow patterns after the 1960s have generally been unfavourable for cottonwood recruitment although some cottonwood colonization has occurred in association with physical disturbance from gravel mining. With recent flow regimes, regulated flows along upper reaches maintain the river near bank‐full throughout the growing season, thus inundating suitable seedling recruitment sites. Downstream, irrigation withdrawals reduce the river stage, resulting in seedling establishment at low elevations that are lethally scoured by subsequent high flows. These regulated flow regimes have not hindered growth of established trees, but have reduced the recruitment of cottonwoods, and particularly disfavoured females, thus altering sex ratios and producing skewed cottonwood population age and gender structures. The cottonwood decline has also been associated with other changes in riparian plant community composition, including the encroachment of invasive weeds. Based on this ecohydrologic analysis we discuss flow adjustments that could rejuvenate cottonwood forests along the Yakima River. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Dams have reduced distribution of the endangered Colorado pikeminnow Ptychocheilus lucius in the upper Colorado River basin: low‐head diversion dams blocked upstream passage and large dams inundated free‐flowing segments and cooled downstream reaches with deep‐water releases. To date, range restoration efforts in the Colorado and Gunnison Rivers have focused on building fish ladders around diversion dams to allow recolonization of upstream reaches. Upstream thermal suitability for this warmwater cyprinid was assessed using temperature data and existing distributional information from river reaches where Colorado pikeminnow movements were unrestricted. Among‐site thermal regime comparisons were made using mean annual thermal units (ATU), derived from mean daily temperatures during 1986–2005 and the relation between temperature and Colorado pikeminnow growth. Upstream distributional limits in the Yampa and Gunnison Rivers occurred where in‐channel thermal regimes fell below a long‐term mean of 47–50 ATU, suggesting that two Colorado River fish ladders will make available an estimated 17 km of thermally suitable habitat. A Gunnison River fish ladder successfully re‐established access to 54 km of suitable habitat, but 32 km of critical habitat upstream remains unsuitable. Suitability there could be achieved by raising temperatures only 1–2°C from late May to mid‐October with installation of a temperature control device on an upstream dam. Maximum, main‐channel, summer temperatures did not limit Colorado pikeminnow distribution in downstream reaches of the upper Colorado River. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

13.
Aridland riparian forests are undergoing compositional changes in vegetation and wildlife communities due to altered hydrology. As flows have been modified, woody vegetation has shifted from native‐tree dominated to non‐native and shrub encroached habitats. Squamate vertebrates such as lizards and snakes are important food web links in riparian ecosystems of the Sonoran Desert. However, little is known about how these communities might respond as riparian forests transition from native tree dominated habitats to open xeroriparian woodlands. We used pitfall arrays deployed across three types of riparian forest to document reptile community patterns, measure vegetation, and produce species‐habitat models. Riparian forests differed on the basis of habitat composition and physiognomy. Two types, cottonwood‐willow (Populus‐Salix) and mesquite (Prosopis) stands, were characterized by high woody species richness. The third type, non‐native saltcedar (Tamarix) stands, had high densities of woody debris and greater canopy coverage. Results show that lizards were common and abundances greatest in cottonwood‐willow, especially for arboreal species. Species‐habitat models for three of five lizard species indicated a negative association to saltcedar‐invaded habitat and no species appeared to select saltcedar‐dominated habitat. Mesquite was an intermediate habitat between upland and riparian, and supports high species diversity. A wildfire in the cottonwood‐willow forest disproportionately affected abundance of ground‐foraging whiptail (Aspidoscelis) lizards; whereas, abundance of arboreal spiny (Sceloporus) species was unchanged. Expected drivers from climate and water use could transition cottonwood forests to other woody‐dominated types. Our results suggest that mesquite woodlands would provide higher quality habitat for riparian reptiles compared to non‐native saltcedar stands.  相似文献   

14.
This paper documents vegetation changes in a floodplain area lying next to a newly constructed reservoir on the River Yamuna (near Delhi), about a kilometre downstream of an older, silted‐up reservoir. The study site was a rectangular depression bounded by dykes on three sides and agricultural fields on the fourth. The composition and abundance of species in the plant community were observed over a ten year period (1986–1996) and changes in water level both at the study site and in the reservoir were followed. Site hydrology was governed by water level changes caused by reservoir operation with effect from 1990, when it was first filled to capacity and water began to seep through the dyke. The study area experienced increasing depth, duration and frequency of flooding. Species richness peaked in 1992, and the plant community developed four distinct zones closely associated with the hydrological gradient. Patchiness also increased though Typha angustata patches merged over time to form a continuous expanse. The microtopography of the study site, and hydrological and plant‐induced changes were largely responsible for community changes. Dyke compaction over time resulted in cessation of seepage and the study site gradually dried up by 1998, with a consequent loss of plant species. The study concludes that the hydrological regime, rather than physical connectivity with the river, may play the dominant role in developing and maintaining plant community structure in floodplain wetlands. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
A previously ephemeral stream is being used to convey water and create fish habitat as part of mitigation for impacts of a transbasin water diversion project. This stream, the South Fork of Middle Crow Creek, is located in the Medicine Bow National Forest, Wyoming. After two years of increased flow to the 8.8 km study reach, the amount of stream channel had increased 32 per cent and the total area of beaver ponds had more than doubled. Brook trout (Salvelinus fontinalis) stocked into the beaver ponds are surviving and growing. Factors limiting fishery development in the augmented stream include interrupted flow, discontinuous channels, and summer water temperatures exceeding 25°C. Analysis using the Physical Habitat Simulation System indicated that a flow of 0.07m3s?1 would maximize the amount of weighted usable area for brook trout under the channel conditions present in 1987.  相似文献   

16.
峡兜卡口是乌龙江最为重要的控制断面,其阻力特性及其对乌龙江洪水位及行洪能力的影响尚不明确。采用二维数学模型计算了不同洪水方案下乌龙江峡兜卡口水面线、水面比降及流速分布特征,对产生壅水的临界流量、壅水高度及作用范围进行了分析。结果表明:峡兜卡口是乌龙江河道水面比降最大的位置,在峡兜流量超过19320 m^3/s后是乌龙江河道断面平均流速最大的位置,其阻力特性和壅水效应与流量密切相关;初步认定峡兜卡口发挥壅水作用的临界流量为19320 m^3/s,在峡兜流量为35037 m^3/s(P=0.5%)、32333 m^3/s(P=1%)、29435 m^3/s(P=2%)时,峡兜壅水高度分别为0.13、0.10、0.07 m,壅水影响范围可分别至峡兜上游1.99、1.88、1.69 km。  相似文献   

17.
It is hypothesized that slow, shallow water habitats benefit larval pallid sturgeon Scaphirhynchus albus; however, testing this hypothesis is difficult, given the low number of larval pallid sturgeon present in large rivers. In contrast, relatively large numbers of age‐0 shovelnose sturgeon Scaphirhynchus platorynchus have been sampled, providing a potentially useful baseline to assess the importance of slow, shallow water to age‐0 sturgeon of both species (hereafter age‐0 sturgeon) in the lower Missouri River. Thus, we investigated the potential relationships between the prevalence of shallow water <1.5 m and the age‐0 sturgeon catch rates at multiple scales. Age‐0 sturgeon were usually sampled in water >1.5 m, and catch rates were usually highest in the upper half [i.e. river kilometre (RKM) 400 to 800] of the lower Missouri River study area, whereas the availability of water <1.5 m was usually highest in the lower half (i.e. RKM 0 to 400). Similarly, there was no relationship between age‐0 sturgeon mean catch‐per‐unit effort and ha/km of water <1.5 m at any studied scale. Our results may suggest that shallow water, as currently defined, may not be a suitable surrogate for assessing efforts to address pallid sturgeon population declines. However, it is still unknown if lack of appropriate habitat is currently limiting pallid sturgeon. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. River Research and Applications published by John Wiley & Sons Ltd.  相似文献   

18.
The Green River is a major tributary of the Colorado River with a drainage area of 115 770 km2 in Colorado, Utah and Wyoming. The influence of Flaming Gorge Dam on sediment transport and the potential for future channel change were studied using comparative analysis of historical aerial photographs from 1952 to 1987 and geographical information systems, published sediment (1951-86) and discharge (1965-87) records, and sediment data collected during 1986-8. Since the closure of the dam in 1964, new equilibrium channel widths were apparently achieved by 1974 in the reach 161-279 km below Flaming Gorge Reservoir and by 1981 in the reach 465-509 km below the reservoir. Recent high flows have resulted in an increase in average channel width in both reaches as measured on aerial photographs taken in 1986 and 1987. Sediment data from US Geological Survey gauges on the Green River and its primary tributaries and three sites established on the Green River for this study suggest that bed material sediment transport in the Green River has now attained a quasi-equilibrium, with the river transporting just the load supplied to it. The potential for future channel changes exists, as evidenced by the response of the channel (i.e. channel widening) to the increased flows during 1983, 1984 and 1986. Future adjustments in channel characteristics should be limited to responses to changes in discharge and sediment supply and transport in the basin.  相似文献   

19.
River regulation in the headwaters and middle reaches of the Gunnison River, Colorado, significantly altered distributions and abundances of Trichoptera fauna. Twenty-five species were collected from mainstream samples, with the greatest species richness occurring at an unregulated, rhithron segment above the central reach dams. At sites immediately below the three hypolimnial-release dams and a reregulation dam, species richness was reduced 35–90 per cent and abundance > 95 per cent. Net-spinning caddisflies were the dominant trichopterans at unregulated sites; Arctopsyche grandis in the upper reaches (218 organisms, 586 mg dry mass m?2) and Hydropsyche cockerelli, H. occidentalis and Cheumatopsyche pettiti in the lower river (9041 total organisms, 6621 mg m?2), downstream from the last dam. The observed distributional pattern of low trichopteran densities in dam tailwaters and high hydropsychid densities at sites 60–80 km below the central reach dams is a classic expression of continuum resets and adjustments in response to stream regulation as predicted by the Serial Discontinuity Concept.  相似文献   

20.
淮河治理与河湖江海的关系   总被引:1,自引:1,他引:0       下载免费PDF全文
根据淮河近千年演变记录、近百年实测的河床演变资料以及治淮的经验教训,论述黄河夺淮使淮河中下游发生本质性变化,加重了洪涝灾害和治理的难度,治淮不仅要研究淮河自身,还应研究和处理淮河与黄河、洪泽湖、长江和大海的关系。认为保留洪泽湖一定的蓄水功能,实施河湖分开,扩大入海通道,消除洪泽湖作为中游侵蚀基准面的负面效应,利用疏浚和溯源冲刷调整淮河中游河床纵剖面等措施,是提高已有治淮工程防洪标准、减轻洪涝灾害的治本方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号