首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
《塑料》2018,(6)
将精制后的碱木质素代替部分聚醚多元醇,通过一步发泡法与聚合MDI混合制备了碱木质素聚氨酯泡沫,同时采用季戊四醇(PER)和聚磷酸铵(APP)复配组成膨胀阻燃剂(IFR)制备了碱木质素阻燃聚氨酯泡沫,通过极限氧指数(LOI)测试分析了碱木质素阻燃聚氨酯泡沫的阻燃性能。通过热重分析(TGA)、锥形量热测试(CONE)和扫描电子显微镜(SEM)测试,分别研究了所制试样的热降解行为和成炭性能、燃烧行为和残炭的形貌。分析结果表明:当碱木质素的添加量为聚醚多元醇的5%,APP与PER的质量比为3∶1,IFR的添加量为30%时,碱木质素基聚氨酯泡沫的LOI达到了24.8%,IFR的加入促进了碱木质素聚氨酯泡沫的降解和成炭,从而提高了材料的阻燃性能。  相似文献   

2.
将精制后的碱木质素部分代替聚醚多元醇,利用一步发泡法与聚异氰酸酯(PMDI)制备碱木质素-聚氨酯泡沫材料(PUF/碱木质素),同时利用膨胀石墨(EG)制备阻燃型碱木质素-聚氨酯泡沫材料(PUF/碱木质素/EG),通过极限氧指数(LOI)测试对所制试样的阻燃性能进行分析。利用热重分析(TGA)和扫描电子显微镜(SEM)测试,分别研究了所制试样的热降解行为、成炭性能及残炭形貌。结果表明:当碱木质素替代量为5%、EG添加量为30%时,PUF/碱木质素/EG材料的LOI达到26.1%,EG的加入提高了PUF材料的成炭量,从而达到了提高材料阻燃性能的目的。  相似文献   

3.
李旭  许苗军  李斌 《塑料》2016,(4):39-42,72
将实验室自制的三嗪大分子成炭发泡剂(CFA)、聚磷酸铵(APP)及硅树脂复配成膨胀阻燃剂(IFR)添加到聚乳酸(PLA)材料中制备阻燃PLA(IFR-PLA)材料,通过极限氧指数(LOI)和垂直燃烧(UL-94)测试研究了材料的阻燃性能。通过热重分析(TGA)测试研究了材料的热降解行为和成炭性能,通过锥形量热(CONE)测试研究了材料的燃烧行为,并对其燃烧后残炭的形貌进行研究。结果表明:当APP与CFA的质量比为5∶1,IFR的添加量为15%时,IFR-PLA材料通过UL-94 V-0级,LOI值达33.5%。IFR的加入促进了PLA材料的降解和成炭,从而提高了材料的阻燃性能。  相似文献   

4.
以聚磷酸铵/膨胀石墨(APP/EG)为阻燃剂,制备了高阻燃的聚异氰酸酯-聚氨酯(PIR-PU)泡沫材料。采用极限氧指数(LOI)测试、红外光谱分析(IR)、热重分析(TGA)等方法对所制备PIR-PU泡沫材料的燃烧及热降解行为进行了研究。结果表明:APP与EG存在着良好的协同阻燃作用,APP/EG的添加可有效提高PIR-PU泡沫材料的LOI值,其中当APP/EG用量为25份、其配比为3/7时,PIR-PU泡沫材料具有最佳阻燃性能,材料的LOI值可达35.4%。APP与EG的复配使用,使PIR-PU泡沫材料的炭层较单独使用APP或EG时更为致密,有效提高了材料的热分解温度,降低了热降解速率,进而改善了材料的阻燃性能。  相似文献   

5.
利用精制后的碱木质素部分代替聚醚多元醇制备碱木质素基聚氨酯泡沫材料(PUF/木质素)。将次磷酸铝(AHP)作为阻燃剂添加到材料中制备PUF/木质素/AHP材料。通过极限氧指数(LOI)测试PUF/木质素/AHP材料的阻燃性能,通过热重分析(TG)研究了材料的热降解行为和成炭性能,通过锥形量热(CONE)测试和扫描电子显微镜(SEM)分别研究了PUF/木质素/AHP材料的燃烧行为和残炭的表面形貌。结果表明:当碱木质素添加量为聚醚多元醇的5%、AHP的添加量为30%时,PUF/5%木质素/30%AHP材料的LOI值达到了25.6%,同时降低了材料的热分解速率和热释放量,促进了材料的成炭。当AHP受热分解时,产生的PO自由基会捕捉材料燃烧时产生的氢氧自由基,从而抑制燃烧反应,同时产生磷酸铝和焦磷酸铝,形成致密的炭层阻隔物质和能量的传递,阻止材料进一步燃烧,从而提高材料的阻燃性能。  相似文献   

6.
以次磷酸铝(ALHP)和聚磷酸铵(APP)为阻燃剂,采用一步发泡法制备了阻燃聚氨酯泡沫塑料(PUF)。研究了ALHP和APP单独及复配使用对PUF极限氧指数(LOI)的影响,以及ALHP/APP复配阻燃剂对PUF热稳定性能、拉伸强度、成炭性能和残炭形貌的影响。结果表明:当阻燃剂总添加量为25%,ALHP和APP的质量比为5:1时,LOI达到了28%。拉伸测试结果表明:ALHP/APP的加入显著地提高了PUF的拉伸强度。TGA分析结果表明:阻燃剂ALHP/APP的加入使PUF提前脱水成炭,增加了PUF在高温下的热稳定性能与成炭性能。SEM观察结果表明:ALHP/APP的加入使得PUF表面形成了致密的膨胀炭层,有效地发挥了隔热、隔氧的作用,从而提升了PUF的阻燃性能。  相似文献   

7.
牛力  李旭  王佳楠  刘志明 《塑料》2020,49(1):19-22
对精制后的碱木质素进行羟甲基化改性,再利用改性后的羟甲基化碱木质素部分替代聚醚多元醇,采用一步发泡法与聚合MDI制备了羟甲基化木质素基聚氨酯泡沫材料。将次磷酸铝(AHP)作为阻燃剂添加到泡沫中制备了阻燃碱木质素聚氨酯泡沫,通过极限氧指数(LOI)测试分析了羟甲基化木质素基阻燃聚氨酯泡沫的阻燃性能。利用热重分析(TG)和扫描电子显微镜(SEM)分别研究制得泡沫的热降解行为、成炭性能和残炭形貌。实验结果表明,当羟甲基化碱木质素替代聚醚多元醇的量为60%,次磷酸铝的添加量为30%时,碱木质素聚氨酯泡沫材料的极限氧指数(LOI)值达到了27.5%。因此,羟甲基化碱木质素和次磷酸铝使泡沫在燃烧时能更好的形成炭层,从而有效地隔绝空气,降低热传递,提高了材料的阻燃性能。  相似文献   

8.
《塑料科技》2015,(9):83-86
将大分子含磷-氮阻燃剂三聚氰胺四亚甲基硫酸膦齐聚物(MTMPSO)与聚磷酸铵(APP)复配得到的膨胀阻燃体系(IFR)添加到聚乙烯(PE)中制备成阻燃型PE材料(IFR-PE),研究了材料的阻燃性能、热降解行为、燃烧后的残炭形貌、力学性能及耐水性。实验结果表明:当IFR添加量为32%时,IFR-PE可通过UL 94V-0级,极限氧指数(LOI)达到了26%。热重分析(TGA)测试表明:800℃时,IFR-PE残炭率为23.4%,表明阻燃剂的添加大大提高了材料的成炭性能。扫描电镜(SEM)结果表明:IFR-PE燃烧后形成连续致密的炭层,能有效阻止热量传递和可燃气体的流动,提高了材料的阻燃性能。耐水性实验表明:IFR-PE的失重率仅为0.46%,具有很好的耐水性能。  相似文献   

9.
将次磷酸铝(AHP)及膨胀石墨(EG)与膨胀阻燃剂(Orient IFR603)进行复配后添加到聚氨酯中制备阻燃硬质发泡聚氨酯(RPUF)材料,研究了IFR/AHP和IFR/EG阻燃发泡聚氨酯材料的阻燃性能、表观密度、力学性能及热降解行为、泡孔结构。结果表明,AHP及EG与IFR对阻燃聚氨酯泡沫材料具有一定的协效作用。IFR及IFR/AHP阻燃体系的加入会使得RPUF的压缩性能有所提升,但IFR/EG阻燃体系降低了材料的压缩性能。阻燃剂的加入改变了聚氨酯泡沫体系的热降解过程。阻燃剂的加入对聚氨酯泡沫材料的泡孔影响不大,阻燃剂的加入使RPUF材料燃烧后碳层更加的致密和均匀。  相似文献   

10.
以多聚磷酸铵(APP)与新型成炭剂(CNCA-DA)复配成膨胀型阻燃剂(IFR),应用于茂金属乙丙弹性体(MEP)的阻燃改性,并采用氧指数测定仪(LOI)、热重分析仪(TGA)和红外光谱仪(FTIR)研究了IFR对MEP的阻燃作用和协同作用机理。结果表明:APP与CNCA-DA复配成的膨胀型阻燃剂(IFR)对MEP具有良好的阻燃性能;当APP与CNCA-DA的质量比为2∶1时,阻燃效果最佳;当IFR的质量分数为30%时,MEP/IFR复合材料的氧指数值达到32.0%;TGA分析结果表明:APP与CNCA-DA复配后,能促使IFR形成更多的残炭,并使材料的热降解温度向高温方向移动。FTIR分析表明:APP与CNCA-DA复配后,残炭中形成了P-O-C、P-O-P的交联结构,并形成更多的聚芳烃结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号