首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 187 毫秒
1.
原位反应结合多孔Si3N4陶瓷的制备及其介电性能   总被引:2,自引:0,他引:2  
以氮化硅(Si3N4)和氧化铝(Al2O3)为起始原料, 利用原位反应结合技术制备Si3N4多孔陶瓷. 研究烧结温度和保温时间对Si3N4多孔陶瓷的微观结构、力学性能以及介电性能的影响. 结果表明: 烧结温度在1350℃以下, 保温时间<4h时, 随着烧结温度的升高, 保温时间的延长, 样品的强度和介电常数增大; 但条件超出这个范围, 结果刚好相反; 物相分析表明多孔陶瓷主要由Si3N4和Al2O3以及Si3N4氧化生成的SiO2(方石英)组成. 所制备的多孔Si3N4陶瓷的气孔率范围为25.34%~48.86%, 抗弯强度为34.77~127.85MPa, 介电常数为3.0~4.6, 介电损耗约为0.002.  相似文献   

2.
Si3N4粉体表面分析及偶联剂作用量的选择   总被引:1,自引:0,他引:1  
在Si3N4粉体的生产和存储过程中,氧化和水解是两个不利的因素,但在偶联剂的作用下,它们在提高陶瓷粉体与有机载体的相容性方面起到了促进作用.本文测定了未经处理的Si3N4。粉及通过氧化和水解改性的Si3N4粉的表面性质,并分析了它们对偶联剂选择作用量的影响.  相似文献   

3.
以SICl4-NH3-H2为反应体系,采用化学气相渗透法CVI)制备C/Si3N4复合材料.渗透产物的能谱和X射线衍射表明渗透产物为非晶态Si3N4,经1350℃真空热处理后,产物仍然为非晶态Si3N4;经1450℃真空热处理后,产物已经发生晶型转变,由非晶态转变为晶态的α-Si3N4和β-Si3N4.渗透温度、渗透时间、气体流量对试样致密化、增重及微观结构的影响研究表明渗透温度为900℃、SiCl4流量为30mL/min、H2流量为100mL/min、NH3流量为80mL/min、渗透时间120h、系统压力1000Pa时,气体渗透进入碳布预制体后,在预制体内反应均匀,制备的复合材料较均匀.  相似文献   

4.
对Si3N4颗粒及SiC晶须强韧化MoSi2复合材料在773K下的氧化行为进行了研究.通过热重量分析法(TG)分析了MoSi2及其复合材料MoSi2-Si3N4(p)和MoSi2-Si3N4(P)SiC(w)在773K下的氧化性能, 采用SEM和X射线衍射测定其表面形貌和氧化物相组成.结果发现:在773K下, 纯MoSi2和MoSi2+20vol%Si3N4均发生了“Pesting”氧化, 氧化过程服从直线规律, 氧化产物层疏松, 氧化产物主要为MoO3; MoSi2+40vol%Si3N4氧化服从抛物线规律, 速率常数Kp为0.04mg2/(cm4·h), 氧化层致密, 成分主要为SiO2、Si2N2O, 增加Si3N4的含量可显著提高MoSi2的抗“Pesting”氧化能力; MoSi2+20vol%Si3N4+20vol%SiC发生了严重的粉化现象, 氧化产物主要为短针状MoO3.  相似文献   

5.
研究了MgO-Y2O3-Al2O3体系(相应的层状复合陶瓷试样记为A)、Y2O3-Al2O3体系(相应的层状复合陶瓷试样记为B)及La2O3-Y2O3-Al2O3体系(相应的层状复合陶瓷试样记为C)烧结助剂对Si3N4/BN层状复合陶瓷结构与性能的影响.研究表明:在相同的烧结工艺下,试样A、B、C的抗弯强度分别为700、630、610MPa,断裂功分别为2100、1600、3100J/m2.试样A、B以脆性断裂为主,裂纹偏转现象不明显,而试样C的载荷-位移曲线显示了明显的“伪塑性”特征,裂纹的偏转与扩展现象明显.试样A中Si3N4晶粒大小不均且长径比较小,而试样C中长柱状Si3N4晶粒发育完善,有较大的长径比.  相似文献   

6.
本文用玻璃焊料研究了氮化硅陶瓷的液相连接,探讨了组份(0~10wt%α-Si3N4)、温度(1450~1650℃)和保温时间(10~120min)对结合强度的影响规律.结果表明,α-Si3N4的加入提高了液态焊料的粘度,降低了焊料的流动性,导致结合强度下降.采用组份为不含α-Si3N4的纯氧化物玻璃焊料在1600℃、保温30min可以得到较为理想的结合强度.  相似文献   

7.
放电等离子快速烧结SiC晶须增强Si3N4BN层状复合材料   总被引:1,自引:0,他引:1  
采用放电等离子烧结技术(SPS)快速烧结了SiC晶须增强的Si3N4/BN层状复合材料.利用SPS技术,在烧结温度为1650℃、保温15min的条件下,材料的密度可达3.18g/cm3,抗弯强度高达600MPa,断裂功达到3500J/m2.研究表明:特殊的层状结构、SiC晶须的拔出与折断是材料断裂功提高的主要原因.X射线衍射及扫描电子显微镜研究表明:α-Si3N4已经在短短的烧结过程中全部转变成长柱状的β-Si3N4,并且长柱状的β-Si3N4和SiC晶须具有明显的织构.  相似文献   

8.
添加β-Si3N4棒晶对氮化硅陶瓷力学性能的影响   总被引:3,自引:0,他引:3  
将由自蔓延燃烧合成法制备的β—Si3N4棒晶加入到α-Si3N4起始原料中,研究了热压烧结氮化硅陶瓷力学性能的变化.随棒晶添加量的增加,材料的韧性提高,抗弯曲强度下降.与不加棒晶相比,加入8wt%的β-Si3N4棒晶可使陶瓷的韧性从4.0MPa·m1/2提高到6.7MPa·m1/2.断口形貌和压痕裂纹的显微结构观察表明,韧性的提高源于长柱状晶粒的拔出和裂纹的偏转.  相似文献   

9.
在采用熔盐热析出反应在Si3N4陶瓷表面沉积钛金属膜的基础上,对CuAg合金在金属化表面的润湿性进行了研究,结果表明,CuAg合金能对采用该方法金属化的Si3N4陶瓷实现良好润湿,在此基础上,成功实现了钛金属化Si3N4陶瓷与Si3N4陶瓷的连接并对连接工艺进行了系统研究。连接界面的TEM研究发现,界面上广泛存在Ti-Cu-Si-N相并对这种相对连接强度的影响进行了讨论。  相似文献   

10.
研究了TZP陶瓷在固体润滑下,室温(25℃)至600℃制备范围内的摩擦学特性.结果表明,使用石墨和MoS2润滑剂,可在室温至600℃范围内降低TZP/Si3N4摩擦副的摩擦系数和磨损率,但当环境温度过高时,摩擦系数和磨损量有所增加;使用CeO2和Cu对TZP/Si3N4摩擦副的摩擦系数影响不大,但可以降低TZP陶瓷的磨损量;CeF3在高温时,由于结晶化趋势完善及沿(002)面的滑移取向,故可对TZP陶瓷起到良好的润滑作用.  相似文献   

11.
多孔氮化硅/碳化硅复合材料制备的反应机理分析   总被引:7,自引:0,他引:7  
为了探索碳热还原法制备多孔氮化硅/碳化硅(Si3N4/SiC)复合陶瓷材料在高温阶段的反应机理,采用固化的酚醛树脂为碳源,通过热解产生具有反应性的碳,使之在1300-1780℃等不同温度下与表面包裹的氮化硅粉反应,氩气为保护气氛.通过对试样的XRD、TEM分析和显微结构观察,结合反应的热力学和动力学结果计算推测,树脂裂解碳与Si3N4反应生成SiC的机理主要为Si3N4分解生成Si(l)与C进一步发生的液-固反应,和Si(l)与反应过程中的中间产物CO(g)之间发生的液-气反应.其他还包括C与Si3N4间直接进行的固-固反应;C与Si3N4表面的SiO2间的气-固反应以及由SiO(g)、Si(g)参与的气-固反应.树脂裂解碳与Si3N4从1400℃左右开始发生反应形成SiC,温度升高对SiC层的生长有促进,保温时间的延长对SiC层的生长厚度影响较大.  相似文献   

12.
研究新合成方法下得到超硬材料C3N4,利用黑索今(RDX)炸药作为高温、高压源,以双氰胺(C2H4N4)为主要前驱体. 通过扫描电子显微镜(SEM)、X射线衍射分析仪(XRD)、X射线能谱分析仪(EDS)及红外光谱仪(FTIR)分别对输出压力为16GPa时制得样品的结构、形貌、价键特性和元素组成进行了分析与表征. 结果表明,XRD测试数据与理论计算值相符很好,样品中同时含有α、β、石墨相C3N4以及晶间相;样品中C、N元素质量比为1.00∶2.98,两种元素主要以CN形式成键;利用扫描电子显微镜观测到线度为2μm的六边形β-C3N4晶粒. 采用爆炸冲击合成方法合成出多晶C3N4粉末, 并对其合成机理进行了讨论.  相似文献   

13.
冲击波合成立方氮化硅的烧结稳定性研究   总被引:1,自引:0,他引:1  
以冲击波合成的γ-Si3N4粉体为原料, Y2O3-Al2O3-La2O3体系作烧结助剂, 在5.7GPa、1370~1670K的高温高压条件下, 进行了γ-Si3N4粉体的烧结. 研究了不同烧结温度对γ-Si3N4稳定性、相对密度、力学性能及显微结构的影响. 结果表明: γ-Si3N4在 1420~1670K的条件下, 完全相变为β-Si3N4, 在1370K左右的条件下, 发生部分向β-Si3N4相变. 在5.7GPa, 1370K的条件下, 烧结样品的相对密度与维氏硬度分别为98.83%和21.09GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号