首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present investigation, the influence of austempering treatment on the microstructure and mechanical properties of silicon alloyed cast steel has been evaluated. The experimental results show that an ausferrite structure consisting of bainitic ferrite and retained austenite can be obtained by austempering the silicon alloyed cast steel at different austempering temperature. TEM observation and X-ray analysis confirmed the presence of retained austenite in the microstructure after austempering at 400 °C. The austempered steel has higher strength and ductility compared to as-cast steel. With increasing austempering temperature, the hardness and strength decreased but the percentage of elongation increased. A good combination of strength and ductility has been obtained at an austempering temperature of 400 °C.  相似文献   

2.
The fracture behavior of copper-alloyed austempered ductile iron (ADI) was studied using metallography and fractography of selected samples. Three different grades of ADI were developed by austenitization at 900 °C for 60 min, followed by austempering for 60 min at either 270, 330, or 380 °C. The variation in austempered microstructure was determined by scanning electron microscopy of metallographically prepared samples, and structural parameters such as volume fraction of austenite, carbon content, and bainitic needle width were determined from the X-ray diffraction of powdered samples. The effect of austempering temperature on these structural parameters and on hardness, 0.2% proof stress, ultimate tensile strength (UTS), percent elongation, and impact strength was also studied. The fracture behavior under tensile and impact loading was determined by examination of the fractured surfaces and transverse cross sections near the fracture surface. The hardness, 0.2% proof stress, and UTS decrease and the impact energy increases as the austempering temperature is increased, and the morphology of the bainitic structure changes from lower to upper.  相似文献   

3.
《Materials Letters》2004,58(22-23):2707-2711
The effect of austempering on the microstructure and toughness of nodular cast iron (designated as CuNiMoSG) alloyed with molybdenum, copper, nickel, and manganese has been studied. Light microscopy (LM), scanning electron microscopy (SEM), and X-ray diffraction technique were performed for microstructural characterization, whereas impact energy test was applied for toughness measurement. Specimens were austenitised at 860 °C, then austempered for various times at 320 and 400 °C, followed by ice-water quenching. Austempering at 320 °C produces a microstructure consisting of a mixture of acicular bainitic ferrite and the stable carbon-enriched austenite. In this microstructure ε-carbides are also identified after austempering up to 5 h. Fracture mode is changed from ductile to brittle with the prolonged time of austempering at 320 °C. The highest impact energy (115 kJ) corresponds not only to ductile fracture, but also to the maximum value of the volume fraction of retained austenite. Only martensitic structure was observed during austempering at 400 °C, inducing brittle fracture and significantly low-impact energy (10–12 kJ).  相似文献   

4.
The effect of austempering temperature on the microstructure of ausferrite in austempered ductile iron was investigated. The results show that the grain sizes of retained austenite and acicular bainitic ferrite both become larger with the increase of austempering temperature. As the austempering temperature is 240°C, the crystallographic relationship between ferrite and austenite in ausferrite follows Greninger-Troiano relation. However, Nishiyama–Wassermann relation and Greninger-Troiano relation both appear in ausferrite austempered at 300°C. At this temperature, the point-to-point misorientations of individual ferrite needle austempered at 300°C are less than 1°, being less than those at 240°C. This means the ferrite needles at 300°C contain fewer defects. However, some poles of ferrite needles obviously deviate from their ideal positions, which mainly comes from some ends of ferrite needles.  相似文献   

5.
ABSTRACT

A high silicon cast steel was studied in the as-cast condition in order to characterise its solidification macrostructure and microsegregation. The steel, poured into 32?mm-keel-block-shaped moulds, has a coarse solidification structure and marked microsegregation, containing low-alloyed areas with a total alloy content (Cr?+?Mn?+?Si) of 2.3 wt-% and high-alloyed zones of 5.3 wt-%. The bainitic transformation behaviour at 300°C was studied at different austempering times. The bainitic reaction occurs at different rates within the specimen volume, because of its chemical heterogeneity. An austempering heat treatment leads to an inhomogeneous carbide-free bainitic microstructure with different phase amounts, morphologies and sizes. The heterogeneous distribution of sizes and chemical compositions of retained austenite is speculated to benefit mechanical properties.  相似文献   

6.
Abstract

An unalloyed nodular cast iron has been used to investigate the development of microstructure on heat treating in the bainite temperature region. Specimens were austenitised at 900°C for 1·5 h, then austempered for 1, 2, or 3 h at 250,300, and 350°C, respectively, and examined by light, transmission electron, and scanning electron microscopy. Experimental results indicate a microstructure consisting of a stable, highly enriched, retained austenite with one of two lower bainitic ferrite morphologies. One of these morphologies is carbide free acicular ferrite for specimens austempered at 350°C for 1 h and the other is bainitic ferrite in which carbide is distributed within the ferrite produced by different heat treatment conditions. Austempering at 350°C for 2 h and at 300°C for 1 and 2 h resulted in the formation of transition carbides in bainitic ferrite platelets. The η carbide was formed at 350°C for 2 h by precipitation from a bainitic ferrite supersaturated with carbon. By contrast, ? carbide was associated with austempering at 300°C for 1 and 2 h and precipitates either on the austenite twin/bainitic ferrite boundaries or within the bainitic ferrite. The fracture mode of tensile and impact specimens in the austempered condition was fully ductile compared with as cast specimens, which had mixed fracture characteristics.

MST/1646  相似文献   

7.
High-strength bainitic steels have created a lot of interest in recent times because of their excellent com-bination of strength,ductility,toughness,and high ballistic mass efficiency.Bainitic steels have great potential in the fabrication of steel armor plates.Although various approaches and methods have been conducted to utilize the retained austenite(RA)in the bainitic matrix to control mechanical properties,very few attempts have been conducted to improve ballistic performance utilizing transformation-induced plasticity(TRIP)mechanism.In this study,high-strength bainitic steels were designed by controlling the time of austempering process to have various volume fractions and stability of RA while maintaining high hardness.The dynamic compressive and ballistic impact tests were conducted,and the relation between the effects of TRIP on ballistic performance and the adiabatic shear band(ASB)for-mation was analyzed.Our results show for the first time that an active TRIP mechanism achieved from a large quantity of metastable RA can significantly enhance the ballistic performance of high-strength bainitic steels because of the improved resistance to ASB formation.Thus,the ballistic performance can be effectively improved by a very short austempering time,which suggests that the utilization of active TRIP behavior via tuning RA acts as a primary mechanism for significantly enhancing the ballistic performance of high-strength bainitic steels.  相似文献   

8.
A commercial ductile iron is treated by a novel austempering process to obtain a good combination of strength and ductility. The samples are austenitised at 890°C for 10 min, then quenched into patented quenching liquid, and austempered in an electric furnace at 220°C for 5, 10, 30, 60, 240 and 600 min, respectively, finally air cooled. The bending test and the tensile test are conducted and microstructural features are analysed on the austempered ductile iron. The optimum mechanical property is achieved at 220°C for 240 min. Main reason for high strength and ductility is the formation of a fine structure consisting of multiple phases of pre-formed martensite and lath bainitic ferrite with film retained austenite.  相似文献   

9.
In this investigation a new third generation advanced high strength steel (AHSS) has been developed. This steel was synthesized by austempering of a low carbon and low alloy steel with high silicon content. The influence of austempering temperature on the microstructure and the mechanical properties including the fracture toughness of this steel was also examined. Compact tension and cylindrical tensile specimens were prepared from a low carbon low alloy steel and were initially austenitized at 927 °C for 2 h and then austempered in the temperature range between 371 °C and 399 °C to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. Test results show that the austempering heat treatment has resulted in a microstructure consisting of very fine scale bainitic ferrite and austenite. A combination of very high tensile strength of 1388 MPa and fracture toughness of 105 MPa √m was obtained after austempering at 371 °C.  相似文献   

10.
Abstract

Ultimate tensile strength, 0·2% proof strength, elongation, and impact energy measurements are reported for an alloyed ductile iron of composition (wt-%) Fe–3·49C–2·33Si–0·42Mn–0·25Cu–0·23Mo–0·035Mg for austempering temperatures of 400, 375, and 350°C and a range of austempering times after austenitising at 920°C for 120 min. The ADI ASTM A897M:1990 standard is satisfied for an austempering temperature of 350°C but not at 375 or 400°C. This behaviour is discussed in terms of the influence of the unreacted austenite volume from the stage I austenitising reaction and the carbide product of the stage II austenitising reaction on the ductility. The present findings are predicted by the processing windows determined from the austempering kinetics.

MST/3393  相似文献   

11.
Abstract

A stepped heat treatment is proposed for overcoming the difficulty of obtaining ductility in an austempered alloyed ductile iron. The method is illustratedfor an iron containing 0·67%Mn, 0·25%Mo, and 0·25%Cu, using an austenitising temperature of 920°C, afirst step austempering temperature of 400°C for 120 min, and a second step austempering temperature of 285°C. The change in the microstructure and phase characteristics with time during the second austempering step are described. Related changes in the mechanical properties compared with a single austempering treatment at 400°C are an increase in the ultimate tensile strength from 770 to 970 MN m?2, an increase in elongation from 2·5 to 7·5%, and an increase in the unnotched Charpy impact energy from 40 to 150 J.

MST/3119  相似文献   

12.
The effect of various versions of quenching and partitioning (Q&P) and austempering plus tempering (A&T) processes on the combined properties and microstructure of a 0.2C–0.8Si–2.2Mn bainitic steel has been investigated. Results show that the steel exhibits a higher value of product of strength and elongation (PSE) than that reported before with similar compositions. The one-step Q&P process at 230°C and A&T process at 450°C can result in a toughness higher than 80?J?cm?2 and a relatively high PSE (above 29.8?GPa%). The alloy design of this steel is suggested to be beneficial for industrial production because there is a big window for similar PSE. The long-partitioning time (1?h) has good effect on combined properties.  相似文献   

13.
Austempering conditions such as temperature and time and their influence on austempered ductile iron machinability were analyzed. Austenitization at 910°C for 90 min and austempering into molten salt bath at 300°C, 360°C, and 420°C for 30, 60, and 90 min each were performed. Microstructures were analyzed by optical microscopy and hardness measurements. Samples were further machined in a lathe for machinability tests. The lathe was instrumented considering power and cutting time and machinability evaluation performed referring to cutting force and material removal. Microstructures at 300°C for 30 min showed ausferrite with retained austenite and martensite. Retained austenite decreased and acicular ferrite sheaves appeared at 60-min austempering time. Mixed bainite was also present at 90-min austempering. Ausferrite and retained austenite were observed in all austempering periods at 360°C, whereas at 420°C only bainite and fine pearlite were present. Hardness increased with increasing temperature at 30-min austempering and decreased with increasing time. However, an exception was observed at 420°C. The highest machinability performance was achieved at 360°C at 60-min austempering, and the lowest performance at 420°C at 90-min austempering.  相似文献   

14.
The stable and metastable phase diagrams, microsegregation of carbon and alloying additions and the driving force for single and double austempering are reported for a ductile iron (DI) of composition: 3.5% C, 2.64% Si, 0.25% Cu, 0.25% Mo, 0.67% Mn, 0.007% P, 0.013% S, 0.04% Mg The variation with austempering time of the retained austenite volume fraction (VRA), Unreacted Austenite Volume fraction (UAV), austenite carbon content (CJ, UTS, elongation, and unnotched charpy impact energy is reported for single austempering at 400°C, 285°C, and a double austempering treatment (400°C, 120 min., then austempering at 285°C) after austenitizing at 920°C for 120 min. Finally mechanical and physical properties including strength, ductility, toughness, wear resistance, hardness, thermal conductivity, and electrical properties for the following heat treatments are compared:

ADI (upper bainitic structure) 870°C, 120 min.; 375°C, 120 min.ADI (lower bainitic structure) 870°C, 120 min., 285°C, 1 dayADI (Double austempered) 870°C, 120 min., 375°C, 120 min., 285°C, 1 dayAir cooled (mainly martensitic/ some widmanstatten ferrite): 870°C, 120 min. furnace cooled (50.7% proeutectoid ferrite/49% pearlite): 870°C, 120 min. Step-cooled (15% proeutectoid ferrite/ 85% pearlite): 870°C, 120 min., 650°C 30 min., air cooled As cast structure (39.5% proeutectoid ferrite/ 60.5% pearlite)The comparison shows that double austempering can be used with the high Mn DI to improve elongation and impact energy obtained by a single austempering. Control over the austenitizing and austempering temperatures and times in the double treatment can be used to change the relative improvements in elongation and impact energy. The results show that furnace cooled irons have the best elongation and physical properties.  相似文献   

15.
This work presents the influence of austempering heat treatment carried out in one-step and two-step processes on the microstructures and mechanical properties of ductile cast iron. The samples were extracted from as-cast pieces and heat treated by austempering. For the one-step process the samples were heated at 910°C for 90 min for austenitization and cooled in salt bath at a temperature of 300°C for 30 min. For the two-step process the samples were cooled from 910°C to 245°C, kept at this temperature for 5 min in salt bath, then heated in another salt bath at a temperature of 300°C for 30 min. The samples were analyzed by optical microscopy and mechanical tests. After the one-step austempering, microscopic analysis of the samples showed ausferrite microstructure matrix and graphite in nodules surrounded by fine pearlite. For the two-step austempering, the presence of ausferrite matrix with graphite in nodules and retained austenite was observed. As to mechanical properties, the results showed that, with the two-step process there was gain (4.7%) in the average hardness and loss (3.5%) in the impact resistance. The microhardness of the ausferrite was 6.2% higher in the one-step austempering when compared to the two-step process.  相似文献   

16.
Abstract

Austempering kinetic measurements and mechanical property measurements are presented for a ductile iron of composition Fe–3·56C–2·77Si–0·25Mn–0·45Mo–0·43Cu–0·04Mg (wt-%) after austenitising at 870°C and austempering at 400, 375, 320, and 285°C. The austempering kinetic measurements show that increasing the Mo content of the iron, for example, to increase hardenability, does not delay the austempering reaction significantly and the processing window is open for all the austempering temperatures studied. The mechanical properties determined for austempering temperatures of 400 and 375°C show that the higher ductility grades of the austempered ductile iron standards can be satisfied as predicted by the open processing windows. The ductility of the 0·45%Mo austempered iron is reduced compared with that measured in 0·13%Mo and 0·25%Mo irons austempered under the same conditions. This is attributed to an increased amount and continuity of intercellular carbide as the Mo content increases.  相似文献   

17.
Measurements of austempering kinetics and mechanical properties are presented as a function of austempering time over the range 1–4320 min for different combinations of austempering temperature (275, 315, 370 and 400 °C) and austenitizing temperature (870, 900 and 950 °C) for a ductile iron of composition 3.5% C, 2.6% Si, 0.48% Cu, 0.96% Ni, 0.27% Mo and 0.25% Mn. The austempering kinetics are used to calculate processing windows for the three austenitizing temperatures. The mechanical properties are analysed to show that the processing windows accurately predict the austempering times over which the mechanical properties satisfy the ASTM standard. The analysis shows the role of austenitizing temperature, austempering temperature and time in optimizing the mechanical properties. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

18.
Abstract— The fracture toughness of bainitic ductile iron transformed at various austempering temperatures and austempering times was evaluated by using compact tension specimens and compared with the fracture toughness of bulleye casting structure. Using Scanning Electron Microscopy, the mechanism of the fracture mode can be understood by observing the fracture surface. An X-ray diffractometer was used to determine the volume fraction of retained austenite. From the results of fracture toughness properties, it can be concluded that the most suitable austempering temperature of the material used in the present study is from 300 to 350°C.  相似文献   

19.
Abstract

Measurements of the austempering kinetics and mechanical properties are presented for a ductile iron of composition Fe–3·51C– 2·81Si–0·25Mn–0·39Cu–0·13Mo–0·04Mg (wt-%) for austempering temperatures of 285, 320, 375, and 400°C after austenitising at 870°C for 120 min. The kinetic studies show that the alloying level is insufficient to cause a significant delay in ausferrite formation in the intercellular boundaries. This implies that the heat treatment processing window is open for all austempering conditions studied. The mechanical property measurements show that with the correct selection of austempering temperature all the grades of the ASTM Standard 897M : 1990 and BS EN 1564 : 1997 can be satisfied. The hardenability of the present iron is limited and it is therefore unlikely that these standards will be achieved in thicker section components.  相似文献   

20.
Abstract

Spheroidal graphite (SG) cast iron is often plasma nitrided for corrosion resistance, and plasma nitriding has been proposed as a surface engineering treatment to improve wear resistance. However, the microstructure of austempered SG iron comprises constituents that may be unstable at nitriding temperatures. Therefore, the thermal stability of austempered SG cast iron has been studied at high temperature. Differential scanning calorimetry shows that microstructures obtained by austempering at low (300°C) and intermediate (380°C) temperatures, and which contained retained austenite, underwent a large exothermic transition during heating to typical nitriding temperatures. The transition began at approximately 470°C and peaked at 510–520°C, and was due to the decomposition of retained austenite to ferrite and cementite. A microstructure obtained by austempering at a higher temperature (440°C), and which consisted entirely offirst and second stage bainite, was stable up to nitriding temperatures. After tempering for 2 h at 570°C all austempered microstructures consisted offerrite and cementite, but cementite was most finely distributed in the material that had been austempered at 300°C, and coarsest in that austempered at 440°C. It is concluded that if SG cast iron is to be nitrided conventionally at temperatures >500°C, then prior austempering to obtain controlled microstructures is of limited value.

MST/3106  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号