共查询到20条相似文献,搜索用时 31 毫秒
1.
A low‐cost microcontroller based control and data acquisition unit for digital image recording of scanning electron microscope (SEM) images and scanning electron microscope based electron beam lithography (EBL) is described. The developed microcontroller low‐level embedded software incorporates major time critical functions for image acquisition and electron beam lithography and makes the unit an intelligent module which communicates via USB with the main computer. The system allows recording of images with up to 4096 × 4096 pixel size, different scan modes, controllable dwell time, synchronization with main power frequency, and other user controllable functions. The electron beam can be arbitrary positioned with 12‐bit precision in both dimensions and this is used to extend the scanning electron microscope capabilities for electron beam lithography. Hardware and software details of the system are given to allow its easy duplication. Performance of the system is discussed and exemplary results are presented. 相似文献
2.
STEPanizer is an easy-to-use computer-based software tool for the stereological assessment of digitally captured images from all kinds of microscopical (LM, TEM, LSM) and macroscopical (radiology, tomography) imaging modalities. The program design focuses on providing the user a defined workflow adapted to most basic stereological tasks. The software is compact, that is user friendly without being bulky. STEPanizer comprises the creation of test systems, the appropriate display of digital images with superimposed test systems, a scaling facility, a counting module and an export function for the transfer of results to spreadsheet programs. Here we describe the major workflow of the tool illustrating the application on two examples from transmission electron microscopy and light microscopy, respectively. 相似文献
3.
A scanning electron microscope (SEM) system equipped with a motor drive specimen stage fully controlled with a personal computer (PC) has been utilized for obtaining ultralow magnification SEM images. This modem motor drive stage works as a mechanical scanning device. To produce ultra-low magnification SEM images, we use a successful combination of the mechanical scanning, electronic scanning, and digital image processing techniques. This new method is extremely labor and time saving for ultra-low magnification and wide-area observation. The option of ultra-low magnification observation (while maintaining the original SEM functions and performance) is important during a scanning electron microscopy session. 相似文献
4.
A compact add-on objective lens for the scanning electron microscope (SEM) has been designed and tested. The lens is < 35 mm high and can be fitted on to the specimen stage as an easy-to-use attachment. Initial results show that it typically improves the spatial resolution of the SEM by a factor of three. The add-on unit is based upon a permanent magnet immersion lens design. Apart from the extra attachment to the specimen stage, the SEM with the add-on lens functions in the normal way. The in-lens unit can comfortably accommodate specimen heights up to 10 mm. The new add-on lens unit opens up the possibility of operating existing SEMs in the high-resolution in-lens mode. By using a deflector at the top of the add-on lens unit, it can also operate as a quantitative multichannel voltage contrast spectrometer, capable of recording the energy spectrum of the emitted secondary electrons. Initial experiments confirm that a significant amount of voltage contrast can be obtained. 相似文献
5.
The modern high-performance personal computer (PC) has very recently expanded the range of utilization of digital scanning electron microscopy (SEM) images, and the PC will be used increasingly with SEMs. However, the image quality of digital SEM images may be considerably influenced by scanning and digitization conditions. In particular, the effects of the aliasing error peculiar to digital data are often serious in the low-magnification acquisition (undersampling) of SEM images, and moreover even a high-magnification image (oversampling) is disturbed by the undersampled noise (a sort of aliasing error). Furthermore, the signal-to-noise ratio of a digitized SEM image is closely related to the performance of the analog-to-digital converter. To prevent a flood of low-quality digital images with artifacts by the aliasing and additional noise, we propose a method using very high-density sampling (scanning). In addition, we will discuss how to handle digital SEM images from the point of view of the sampling and quantization. 相似文献
6.
An improved scanning method for the scanning electron microscope (SEM) is proposed. Here, quincuncial scanning (sampling) instead of a conventional (raster) scanning is used. This scanning method is very effective for quality improvement of an SEM image obtained under undersampling conditions (rough sampling). The present study focuses on characteristics of the human visual system, specifically the low response of eyes in diagonal directions. When using this method coupled with a high-precision interpolation, the number of pixels necessarily doubles. It is not surprising that it is advantageous for printing. A more important advantage is the fact that SEM images can be acquired with a shorter recording time. Hence, this type of scanning will be helpful for quick and frequent recordings in a "snapshot" mode, which up to now has not been achieved successfully by SEM. 相似文献
7.
A new smoothing filter has been developed for noise removal of scanning electron microscopy (SEM) images. We call this the complex hysteresis smoothing (CHS) filter. It is much easier to use for SEM operators than any other conventional smoothing filter, and it rarely produces processing artifacts because it does not utilize a definite mask (which usually has processing parameters of size, shape, weight, and the number of iterations) like a common averaging filter or a complicated filter shape in the Fourier domain. Its criterion for distinguishing noise depends simply on the amplitude of the SEM signal. When applied to several images with different characteristics, it is shown that the present method has a high performance with some original advantages. 相似文献
8.
A method for preparing and observing clay platelets for size and shape analysis using scanning electron microscopy (SEM) was developed. Samples of the clay platelets were prepared by polyelectrolyte-assisted adsorption onto a pyrolytic graphite surface. The use of graphite as a substrate was advantageous because of the low number of secondary electrons emitted from it during imaging by SEM. The resulting low background noise allowed the emission from the approximately 1 nm thick clay sheets to be clearly visualized. Images of centrifuged montmorillonite showed large exfoliated platelets with lateral dimensions between 200 and 600 nm. In contrast, uncentrifuged montmorillonite appeared to contain a large amount of unexfoliated clusters. Although it was not possible to obtain high-quality images of the smaller sheets of Laponite RD, the images of this material did contain size features comparable to the approximately 30 nm2 size reported previously using light scattering, as well as transmission electron and atomic force microscopies. 相似文献
9.
A method is introduced to assess and correct the geometric distortions which frequently occur in low-magnification scanning electron microscopy (SEM) images. Such images typically exhibit a complex pattern of varying deviations from orthogonality which cannot be adequately corrected by simple geometric transformations such as shifting, scaling, rotation, or shearing. A suitable approach to rectify low-magnification SEM images is polynomial warping, a correction procedure which also accomplishes rubber sheet transformation. To demonstrate the approach, a reference grid for low magnifications has been scanned at 40- and 55-fold magnifications by means of a microanalyzer. Calculated geometric distortions range from 1.5 to 3.5% of the image dimensions; applying polynomial warping, distortions could be reduced to approximately 0.1% of the image dimensions. Because of its easy application and the widespread availability in image processing packages, polynomial warping can be recommended as a routine procedure for rectifying low-magnification SEM images. 相似文献
10.
11.
Thin paraffin sections, mounted on scanning specimen holders previously coated with polyester film tape (Minnesota Mining and MFG Co., Scotch film tape No. 850 gold), were processed for light microscopy (LM) in the conventional way, then covered with celloxin shellac and examined in the LM by using the upper illuminating source. After removal of the shellac from the surface of the sample by immersion in acetone, the sections were air-dried, coated with a copper layer in a vacuum evaporator and examined in a scanning electron microscope (SEM). The method allows: (i) high-quality LM possibilities for establishment of the diagnosis in pathological cases; (ii) SEM examination of the same area as observed in LM; and (iii) EPMA measurements of insoluble precipitates embedded in the tissue. The usefulness of the proposed method is obvious in cases where the composition of a precipitate on LM scale is to be compared with the LM appearance of the surrounding tissue. 相似文献
12.
Experimental nanotips have shown significant improvement in the resolution performance of a cold field emission scanning electron microscope (SEM). Nanotip electron sources are very sharp electron emitter tips used as a replacement for the conventional tungsten field emission (FE) electron sources. Nanotips offer higher brightness and smaller electron source size. An electron microscope equipped with a nanotip electron gun can provide images with higher spatial resolution and with better signal-to-noise ratio. This could present a considerable advantage over the current SEM electron gun technology if the tips are sufficiently long-lasting and stable for practical use. In this study, an older field-emission critical dimension (CD) SEM was used as an experimental test platform. Substitution of tungsten nanotips for the regular cathodes required modification of the electron gun circuitry and preparation of nanotips that properly fit the electron gun assembly. In addition, this work contains the results of the modeling and theoretical calculation of the electron gun performance for regular and nanotips, the preparation of the SEM including the design and assembly of a measuring system for essential instrument parameters, design and modification of the electron gun control electronics, development of a procedure for tip exchange, and tests of regular emitter, sharp emitter and nanotips. Nanotip fabrication and characterization procedures were also developed. Using a "sharp" tip as an intermediate to the nanotip clearly demonstrated an improvement in the performance of the test SEM. This and the results of the theoretical assessment gave support for the installation of the nanotips as the next step and pointed to potentially even better performance. Images taken with experimental nanotips showed a minimum two-fold improvement in resolution performance than the specification of the test SEM. The stability of the nanotip electron gun was excellent; the tip stayed useful for high-resolution imaging for several hours during many days of tests. The tip lifetime was found to be several months in light use. This paper summarizes the current state of the work and points to future possibilities that will open when electron guns can be designed to take full advantage of the nanotip electron emitters. 相似文献
13.
This paper presents a method for eliminating errors of electronic components in integrating analog to digital converters. Offset error in integrator, comparator and amplifiers of dual-slope converter is a great limitation for increasing the resolution of this type of analog to digital converter. The paper proposes an idea that effectively eliminates offset error of integrator and reduces errors of other components. To validate the efficiency of the proposed method, simulation and experimental results are represented in this paper. As a result, this method can potentially allow a cost-effective design of high-resolution ADCs with low performance Op-Amps. 相似文献
14.
The two conventional methods currently employed for the evaluation of image resolution in scanning electron microscopy are the gap method and a fast Fourier transform (FFT) method. These can be highly dependent on personal expertise on the distinction between signal information and noise contained in a micrograph. Hence, the present paper proposes an alternative method (referred to as a contrast-to-gradient (CG) method) that can determine the image resolution of a micrograph without requiring personal expertise on the judgment of noise. The image resolution in the CG method is defined as a weighted harmonic mean of the local resolution, which is proportional to the quotient of the threshold contrast divided by the local gradient. The local gradient is calculated from the quadratic function that best fits the local pixel intensities over 5 x 5 pixels. It has been shown that the CG method, compared with the FFT method, has a broader range of applications for various types of images, such as low-contrast, noise-containing, filter-processed, highly directional, and quasi-periodic feature images. 相似文献
15.
Marcia M. Miller John Hardy Jean Paul Revel Miro Rusnak 《Microscopy research and technique》1987,6(1):31-34
Described here is the construction of two 35-mm camera adaptors for attachment to the recording monitors of scanning electron microscopes (SEM). The designs are simple and readily adaptable to almost any SEM. The choice of this camera format for recording SEM images is one of convenience as well as economy and does not sacrifice micrograph quality. 相似文献
16.
Monte Carlo simulation methods for the study of electron beam interaction with solids have been mostly concerned with specimens of simple geometry. In this article, we propose a simulation algorithm for treating arbitrary complex structures in a real sample. The method is based on a finite element triangular mesh modeling of sample geometry and a space subdivision for accelerating simulation. Simulation of secondary electron image in scanning electron microscopy has been performed for gold particles on a carbon substrate. Comparison of the simulation result with an experiment image confirms that this method is effective to model complex morphology of a real sample. 相似文献
17.
Cyanoacrylic glue (Eastman 910) was used to affix small pieces of nasal scrapings to lens paper immediately before fixation in the glutaraldehyde. The lens paper not only served to hold specimens together so that they were not lost during tissue processing, but also functioned as a ‘landmark’ for the specimens, so that specimens could be oriented in a specific manner during embedding and subsequent sectioning. 相似文献
18.
We demonstrate that the gas-amplified secondary electron signal obtained in the environmental scanning electron microscope has both desired and spurious components. In order to isolate the contributions of backscattered and secondary electrons, two sets of samples were examined. One sample consisted of a pair of materials having similar secondary emission coefficients but different backscatter coefficients, while the other sample had a pair with similar backscatter but different secondary emission coefficients. Our results show how the contribution of the two electron signals varies according to the pressure of the amplifying gas. Backscatter contributions, as well as background due to gas ionization from the primary beam, become significant at higher pressure. Furthermore, we demonstrate that the relative amplification efficiencies of various electron signals are dependent upon the chemistry of the gas. 相似文献
19.
Griffin BJ 《Scanning》2000,22(4):234-242
An electron-based technique for the imaging of crystal defect distribution such as material growth histories in non- and poorly conductive materials has been identified in the variable pressure or environmental scanning electron microscope. Variations in lattice coherence at the meso-scale can be imaged in suitable materials. Termed charge contrast imaging (CCI), the technique provides images that correlate exactly with emitted light or cathodoluminescence in suitable materials. This correlation links cathodoluminescence and an electron emission. The specific operating conditions for observation of these images reflect a complex interaction between the electron beam, the positive ions generated by electron-gas interactions in the chamber, a biased detector, and the sample. The net result appears to be the suppression of all but very near surface electron emission from the sample, probably from of the order of a few nanometres. Consequently, CCI are also sensitive to very low levels of surface contaminants. Successful imaging of internal structures in a diverse range of materials indicate that the technique will become an important research tool. 相似文献
20.
This paper discusses a new approach to focusing and astigmatism correction based on the fast fourier transforms (FFTs) of scanning electron microscopy (SEM) images. From the FFTs, it is possible to obtain information on the severity of the defocus and astigmatism. This information is then processed by an algorithm to perform real-time focusing and astigmatism correction on the SEM. The algorithm has been tested on defocused and astigmatic images of different samples, including those with highly directional features. Experiments show that the images obtained after running the algorithm can be as good as those that an experienced SEM operator can achieve. 相似文献