首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
有机液态氢化物可逆储放氢技术进展   总被引:6,自引:0,他引:6  
蔡卫权  陈进富 《现代化工》2001,21(11):21-23
有机液态氢化物可逆储放氢技术是一种具有独特优点的新型储氢技术.介绍了这种储氢技术的原理和特点,综述了国内外研究现状.指出今后应从开发高效脱氢催化剂和膜反应器两个角度出发改进该系统的脱氢效率.  相似文献   

2.
本文对氢能发展的意义进行了介绍,阐述了我国近几年在氢能源发展和氢燃料电池车方面的相关支持性文件。并针对氢能储运环节,分别介绍了国内高压气态储氢、低温液态储氢、金属氢化物储氢和有机液态储氢四种方式的发展现状以及标准研究现状。  相似文献   

3.
姜召  徐杰  方涛 《化工进展》2012,(Z1):315-322
综述了常用的储氢方法:加压气态储氢、低温液化储氢、碳质材料储氢、金属合金储氢、络合氢化物储氢、玻璃微球储氢、有机液体储氢等,总结其相应的储氢原理并进行了优缺点分析。重点对新型有机液体储氢材料乙基咔唑的储放氢性能进行了阐述,并根据目前国内外的研究现状提出了问题,针对问题提出了一些设想,期望通过改进获得更高的吸放氢量、吸放氢速率以及合适的温度。  相似文献   

4.
以Raney-Ni为催化剂,对乙基咔唑在高压反应釜中的循环吸放氢过程进行了研究.研究表明:在6 h内,乙基咔唑实现了在较低温度下的储放氢过程,质量储氢密度达到5.61%,目的在于实现乙基咔唑-十二氢乙基咔唑体系在较低温度下的循环储放氢过程,有效推进有机液体氢化物储氢的实用化进程.  相似文献   

5.
氢能作为一种无污染的清洁新能源正日益受到重视,氢的存储和运输是氢能发展的关键问题。氢能在汽车上的应用正在得到研究。笔者综述了高压气态储氢技术、金属氢化物储氢技术、物理吸附储氢技术、液态有机化合物储氢技术和低温液态储氢技术的原理,总结了各种技术的优缺点,介绍了其研究现状,并对车载储氢技术的未来发展进行了展望。  相似文献   

6.
氢能源作为重要的二次能源,能量密度大、环境友好且用途广泛,是人类战略能源发展的重要方向。然而,氢气储运仍面临较大的成本和安全难题,有机液体储氢化合物(LOHCs)储放氢技术以其储氢密度较高、储存条件温和、运输方便等优势成为氢气储运可供选择的技术之一。相比稠环芳烃类化合物,含氮有机储氢化合物具有更温和的催化加氢和脱氢条件,可有效提高储放氢鲁棒性和反应能效。基于此,本文系统综述了含氮有机储氢化合物加氢及脱氢反应研究进展,阐述了两类反应的路径和催化作用机制,从催化剂活性中心和载体、双金属协同效应、反应条件、催化剂稳定性等方面系统分析了加氢/脱氢催化剂,并详细总结了基于连串反应、反应网络等模型的反应动力学。介绍了含氮有机储氢化合物储氢技术目前面临的挑战并提出未来的研究思路及展望。但是该技术仍存在较多问题,应在有机储氢化合物配方体系、储放氢连续反应系统、催化剂设计与制备、催化剂构效关系、精准反应动力学和全面理化性质数据库等方面进行深入研究。  相似文献   

7.
介绍了焦炉煤气净化及甲烷化工艺,提出了焦炉煤气甲烷化富氢尾气制氢技术,并对富氢尾气制氢技术进行了分析。有机储氢载体不属于危化品,便于运输,储氢量高,基于液态有机储氢载体的富氢尾气制氢技术安全可靠,经济可行,充分利用了现有的富氢尾气资源,促进了焦炉煤气的综合利用。  相似文献   

8.
简要介绍了高压储氢、液化储氢、金属氢化物储氢和有机液体氢化物储氢等几种主要储氢技术的原理和研究进展.讨论分析了各种储氢技术的特点,指出有机氢化物在低温下高效脱氢,将是储氢技术的发展方向.  相似文献   

9.
李冬燕 《河北化工》2007,30(2):11-13,15
介绍了高压压缩储氢、深冷液化储氢、金属氢化物储氢、碳纳米管吸附储氢及有机液体氢化物储氢等几种储氢技术的发展现状,并指出储氢技术未来的发展方向.  相似文献   

10.
周鹏  刘启斌  隋军  金红光 《化工进展》2014,33(8):2004-2011
氢气作为一种高效、清洁的能量载体,被视为21世纪最具发展潜力的能源。氢的储存是氢能规模化应用的关键,相比于物理储氢,化学储氢更加高效安全。常用的化学储氢方式主要有金属氢化物、配位氢化物、有机液体氢化物等。本文综述了上述3种主要储氢方式的研究进展并指出存在的问题。金属氢化物中,如新近发现的多相R-Mg-Ni系储氢合金储氢量较高,价格低廉,但其仍存在过于稳定、加/脱氢动力学性能差等问题;配位氢化物含有丰富的轻金属元素,储氢密度较高,但存在可逆循环性能差的问题,限制了其应用;液体有机物储氢量高,还可以同汽油一样在常温常压下运输,且环己烷、苯等液体有机储氢介质均为工业上可以大规模生产的化学品,如果能开发出高稳定性、高转化率和高选择性的脱氢催化剂,将大幅度推动氢能规模化应用。  相似文献   

11.
张媛媛  赵静  鲁锡兰  张德祥 《化工进展》2016,35(9):2869-2874
氢气是一种清洁、高效的能量,被视为最具发展潜力的清洁能源,其存储和运输是影响氢能大规模应用的关键问题。常用的储氢方法有高压气态储氢、液化储氢、金属合金储氢和有机液体氢化物储氢等,本文综述了其中受到广泛关注的有机液体储氢材料,分析了多种有机液体储氢材料的储氢原理与特点,认为有机液体储氢容量大,可循环使用,更加高效安全。主要介绍了环己烷、甲基环己烷、十氢萘、咔唑和乙基咔唑等,重点对目前的国内外研究现状进行了阐述。根据分析结果,对其发展前景进行了展望,指出如果利用工业上能够大规模获取的化学原料,如萘系多环芳烃,开发高效低成本加氢脱氢催化剂,研究最适宜的加氢与脱氢条件,可大幅降低储氢成本,有利于氢能的大规模应用与发展。  相似文献   

12.
梁博  张早校 《当代化工》2003,32(4):224-228
综述了金属氢化物(MH)的应用技术,包括MH在氢的储存运输、氢汽车、热泵、热一机械能转换、氢的分离与精制、电池和催化等方面的应用。存在贮氢能力低、对气体杂质高度敏感、初始活化困难等问题。今后应开发可逆氢容量大、价格性能比合适、寿命长的新型MH。  相似文献   

13.
K. Mark Thomas   《Catalysis Today》2007,120(3-4):389-398
The development of safe and efficient methods of hydrogen storage is a prerequisite for the use of hydrogen with fuel cells for transport applications. In this paper, results available for adsorption of hydrogen on porous materials, ranging from activated carbons to metal organic framework materials, are discussed. The results indicate that up to 5 and 7.5 wt% of hydrogen can be stored on porous carbon and metal organic framework materials, respectively, at 77 K. The amounts of hydrogen adsorbed on porous materials at ambient temperatures and high pressures are much lower (0.5 wt%). The strong temperature dependence of hydrogen physisorption on porous materials is a limitation in the application of this method for hydrogen storage in addition to storage capacity requirements.  相似文献   

14.
根据化学结构不同将镁基储氢材料分为镁基储氢合金氢化物、氢化镁和镁基配位氢化物3类,分别介绍了3类镁基储氢材料在含能材料中应用的研究进展;分析了镁基储氢材料在含能材料中的应用前景和存在的问题;介绍了计算机模拟技术在研究镁基储氢材料对推进剂热分解影响中的应用情况。结果显示,镁基储氢材料能够通过促进含能材料的热分解过程提升其能量水平,同时其较高的热稳定性有利于改善含能材料组分的相容性和安定性。镁基储氢合金氢化物、氢化镁和镁基配位氢化物均可显著提高固体推进剂和炸药的应用性能。因此,镁基储氢材料在含能材料领域具有广阔的应用前景。附参考文献47篇。  相似文献   

15.
Hydrogen is important as a new source of energy for automotive applications. It is clear that the key challenge in developing this technology is hydrogen storage. Current methods for hydrogen storage have yet to meet all the demands for on‐board applications. High‐pressure gas storage or liquefaction cannot fulfill the storage criteria required for on‐board storage. Solid‐state materials have shown potential advantages for hydrogen storage in comparison to other storage methods. In this article, the most popular solid‐state storage materials and methods including carbon based materials, metal hydrides, metal organic frameworks, hollow glass microspheres, capillary arrays, clathrate hydrates, metal nitrides and imides, doped polymer and zeolites, are critically reviewed. The survey shows that most of the materials available with high storage capacity have disadvantages associated with slow kinetics and those materials with fast kinetics have issues with low storage capacity. Most of the chemisorption‐based materials are very expensive and in some cases, the hydrogen absorption/desorption phenomena is irreversible. Furthermore, a very high temperature is required to release the adsorbed hydrogen. On the other hand, the main drawback in the case of physisorption‐based materials and methods is their lower capacity for hydrogen storage, especially under mild operating conditions. To accomplish the requisite goals, extensive research studies are still required to optimize the critical parameters of such systems, including the safety (to be improved), security (to be available for all), cost (to be lowered), storage capacity (to be increased), and the sorption‐desorption kinetics (to be improved).  相似文献   

16.
赵东江  马松艳 《应用化工》2010,39(3):427-431
氢能作为资源丰富、绿色环保的清洁能源而被广泛研究,氢的贮存和运输是氢能应用的关键。金属络合氢化物、碳纳米管、沸石具有较高的贮氢容量,成为贮氢材料研究的热点。综述了金属络合氢化物、碳纳米管、沸石等新型贮氢材料的研究进展,讨论了各种贮氢材料的特点与性能,对其实用性和应用前景进行了分析。  相似文献   

17.
Hydrogen has been widely considered as a clean energy carrier that bridges the energy producers and energy consumers in an efficient and safe way for a sustainable society. Hydrogen can be stored in a gas, liquid and solid states and each method has its unique advantage. Though compressed hydrogen and liquefied hydrogen are mature technologies for industrial applications, appropriate measures are necessary to deal with the issues at high pressure up to around 100 MPa and low temperature at around 20 K. Distinct from those technologies, storing hydrogen in solid-state hydrides can realize a more compact and much safer approach that does not require high hydrogen pressure and cryogenic temperature. In this review, we will provide an overview of the major material groups that are capable of absorbing and desorbing hydrogen reversibly. The main features on hydrogen storage properties of each material group are summarized, together with the discussion of the key issues and the guidance of materials design, aiming at providing insights for new material development as well as industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号