首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methane-air partially premixed flames subjected to grid-generated turbulence are stabilized in a two-slot burner with initial fuel concentration differences leading to stratification across the stoichiometric concentration. The fuel concentration gradient at the location corresponding to the flame base is measured using planar laser induced fluorescence (PLIF) of acetone in the non-reacting mixing field. Simultaneous PLIF of the OH radical and particle image velocimetry (PIV) measurements are performed to deduce the flow velocity and the flame front. These flames exhibit a convex premixed flame front and a trailing diffusion flame, with flow divergence upstream of the flame, as indicated by the instantaneous OH–PLIF, Mie scattering images, and PIV data. The mean streamwise velocity profile attains a global minimum just upstream of the flame front due to expansion of a gases caused by heat release. The flame speed measured just upstream of the flame leading edge is normalized with respect to the turbulent stoichiometric flame speed that takes into account variations in turbulent intensity and integral length scale. The turbulent edge flame speed exceeds the corresponding stoichiometric premixed flame speed and reaches a peak at a certain concentration gradient. The mean tangential strain at the flame leading edge locally peaks at the concentration gradient corresponding to the peak flame speed. The strain varies non-monotonically with the flame curvature unlike in a non-stratified curved premixed flame. The mechanism of peak flame speed is explained as the competition between availability of hot excess reactants from the premixed flame branches to the flame stretch induced due to flame curvature. The results suggest that the stabilization of lifted turbulent partially premixed flames occurs through an edge flame even at a relatively gentle concentration gradient. The strain is also evaluated along the flame front; it peaks at the flame leading edge and decreases gradually on either side of the leading edge. The present results also show qualitatively similar trends as those of laminar triple flames.  相似文献   

2.
The flame index concept for large eddy simulation developed by Domingo et al. [P. Domingo, L. Vervisch, K. Bray, Combust. Theory Modell. 6 (2002) 529–551] is used to capture the partially premixed structure at the leading point and the dual combustion regimes further downstream on a turbulent lifted flame, which is composed of premixed and nonpremixed flame elements each separately described under a flamelet assumption. Predictions for the lifted methane/air jet flame experimentally tested by Mansour [M.S. Mansour, Combust. Flame 133 (2003) 263–274] are made. The simulation covers a wide domain from the jet exit to the far flow field. Good agreement with the data for the lift-off height and the mean mixture fraction has been achieved. The model has also captured the double flames, showing a configuration similar to that of the experiment which involves a rich premixed branch at the jet center and a diffusion branch in the outer region which meet at the so-called triple point at the flame base. This basic structure is contorted by eddies coming from the jet exit but remains stable at the lift-off height. No lean premixed branches are observed in the simulation or and experiment. Further analysis on the stabilization mechanism was conducted. A distinction between the leading point (the most upstream point of the flame) and the stabilization point was made. The later was identified as the position with the maximum premixed heat release. This is in line with the stabilization mechanism proposed by Upatnieks et al. [A. Upatnieks, J. Driscoll, C. Rasmussen, S. Ceccio, Combust. Flame 138 (2004) 259–272].  相似文献   

3.
In this paper, we explore the effects of heat release on mixing and flow structure in a high-speed subsonic turbulent H2 jet in an air coflow. Heat release effects are determined from the comparison of nonreacting and reacting jet behavior, boundary conditions being identical in both cases. Experiments are performed in a wind tunnel specifically designed for this purpose. Planar laser induced fluorescence on OH radicals and on acetone (seeded in the hydrogen jet) are used to characterize the cartography of scalars, and laser Doppler velocimetry is used to characterize velocity profiles in the far field of the H2 jet. Results show significant effects of heat release on mixing and flow structure, indicating an overall reduction of mixing and entrainment in the reacting jet compared to the nonreacting jet. First, a change is observed in the orientation of coherent structures originating from Kelvin-Helmholtz type instabilities, and responsible for air entrainment within the jet, which appear “flatter” in the jet flame. Then, the flame length is increased over what would be predicted from the intersection of the mean stoichiometric contour with the centerline of the nonreacting jet. And finally, the longitudinal average velocity decrease along the jet axis is quicker in the nonreacting jet, and nondimensional transverse velocity fluctuations are about half as high in the reacting jet as in the nonreacting jet, indicating a reduction of the turbulence intensity of the flow in this direction in the jet flame.  相似文献   

4.
Oxy-fuel combustion in separated-jet burners has been proven to increase thermal efficiency and to have a potential for NOx emission reduction. This paper presents an investigation into confined, turbulent, oxy-flames generated by a burner consisting of a central natural gas jet surrounded by two oxygen jets. The study is focused on the identifying the influence of burner parameters on the flame characteristics and topology, namely stability, lift-off height and flame length. The effects of the natural gas and oxygen jet exit velocities, the distance separating the jets and the deflection of oxygen jets towards the natural gas jet are examined. The OH chemiluminescence. Results show that the lift-off heights increase when jet exit velocities and the distance separating the jets are increased. The deflection of oxygen jets decreases the lift-off height and increases the volume of flame in the transversal plane. The flame length increases principally with the oxygen exit velocity and the separation distance, and decreases considerably when the angle of oxygen jets is increased.  相似文献   

5.
A model scramjet engine in which the 1.0 Ma hydrogen jet mixes and reacts with the 2.0 Ma surrounding airstream is investigated using large eddy simulation. The flame structure is analyzed with a focus on the relationship between premixed/diffusion combustion mode and heat release in the supersonic reacting flow. The flame filter is used to evaluate the contributions to heat release rate by different combustion modes qualitatively and quantitatively. Results show that the heat is released from a combination of premixed combustion mode and diffusion combustion mode even when the fuel and airstream are injected into the combustor separately. Local mode-transition occurs as the supersonic jet flame propagates and interacts with shocks. The diffusion combustion mode dominates during the ignition stage and the premixed combustion becomes dominant during the intensive combustion region. When the shock wave impinges on the flame, the combustion area decreases a little due to the compression effects of the shock. However, the heat release rate is significantly improved in the interaction region since the shock could increase the air entrainment rate by directing the airflow toward the fuel jet and enhance the mixing rate by inducing vorticity due to baroclinic effects, which is good for flame stabilization in the supersonic flow. For the present case, 33.3% of the heat is released by diffusion combustion and 66.7% of the heat is released by premixed combustion. Thus the premixed combustion mode is dominant in terms of its contributions to heat release in the model scramjet engine.  相似文献   

6.
In this article, conditional moment closure model (CMC) with detailed chemistry is used to model lifted turbulent methane flame in a high temperature and vitiated coflow and to predict flame lift-off height. The flow and mixing field are predicted by a 2D in-house code employing a k–ε turbulence model (RANS) with modified constant Cε2. The first-order CMC model on its own could not capture the behavior of the lifted flame. Large eddy simulations (LES) coupled with second-order CMC model would be a promising alternative but the objective here was to improve low-cost simulations based on RANS and first-order CMC to address realistic problems. Hence, an extinction model has been incorporated in the first-order CMC to improve its predictions and is referred in this paper as CMCE. In the CMCE model, flame is assumed to be extinguished when the ratio of flow time scale to the chemical time scale falls below a critical value. Predicted lift-off height by the CMCE model agrees very well with the experimental results. There is a significant improvement in temperature and species distributions in both axial and radial directions with the implementation of the CMCE model. Further, the model is extended to predict the flame lift-off height for various coflow temperatures and jet velocities by using scaling ratios. With these modifications, the lift-off heights predicted by the CMCE model match well with the experimental results for a wide range of jet velocities and coflow temperatures. Results from both CMC and CMCE models are compared against the experimental data to show the importance of the extinction model. Flame stabilization process indicates that flame stabilizes on the contour of mean stoichiometric mixture fraction where axial mean velocity equals the turbulent burning velocity.  相似文献   

7.
Numerical calculations of the flame propagation speed and the Damköhler number (Da) at laminar lifted flame base were carried out. The results are intended for further understanding the propagation and the Damköhler mechanisms for flame stabilization, with the former based on a tribrachial flame propagating against the local flow velocity and the latter based on the competition between the reaction time and local residence time of the peak reaction zone. Propane fuel without and with dilution (40% helium and argon, by volume) was used, while the reaction scheme adopted was the one-step irreversible Arrhenius kinetics (see Li et al., Combust. Flame 157 (2010) 1484–1495) which proved successful in predicting the flame lift-off height and effects of thermal expansion and multi-component diffusion. The results reported in this paper show that the flame base propagation speed is up to approximately four times of the one-dimensional stoichiometric flame speed of the fuels used, depending on where the propagation front is defined. These results are compared with previously published experimental and theoretical results from laminar and turbulent diffusion flames. It is found that the flame base propagation speed (Vp) increases in the downstream direction as a result of increasing jet velocity (Vo) under most flame conditions, providing a stabilizing mechanism. However, there exist conditions where Vp decreases while the flame stabilizes. The flame base Damköhler number (Da) always increases as the flame liftoff height increases (resulting from increasing jet velocity). Da is here defined as ratio of peak reaction rate of the reaction kernel (RR) to the flame stretch rate (k) determined at the intersection of the reaction kernel (approximately coinciding with the 2000 K isotherm) and the stoichiometric contour. The value of Da appears to be of the order of 10?3 for the three fuels studied, and the increasing trend of Da with the lift-off height also helps to explain the flame stabilization.  相似文献   

8.
Inverse diffusion lift-off flame was widely used in industrial fields such as non-catalytic partial oxidation of methane. In order to investigate the stability and chemiluminescence characteristics of the inverse diffusion lift-off flame, the OH1 and CH1 radiation characteristics, lift-off height, and transition (attachment, lift-off and blow-out) of flames under different burner structure were discussed. The results showed that burner rim thickness and incidence angles would affect the stability of the inverse diffusion flame. When the thickness of the burner rim exceeded 0.5 mm, the flame would directly change from the attachment state to blow-out state as oxygen velocity increased. Additionally, the values of the blowout limit of the nozzle were inversely proportional to the rim thickness of the burner. Different incident angles would result in various shear angles, which would affect the flame structure. As the incidence angle decreased, the tangential velocity of flame increased and the flame tended to be more stable. When the lift-off flame generated, OH1 intensity and distribution showed a sudden change, and the OH1/CH1 peak intensity ratio of the flame appeared abrupt changes.  相似文献   

9.
The three principal theories for the stabilization of lifted flames on turbulent jets of fuel are reviewed in the light of the most recent flame imaging experiments in the literature. Most of these experiments have been conducted with a small co-flow of air, but the observations are relevant to lift-off with higher ratios of co-flowing air to fuel jet velocity. The similarity solutions for jets in co-flow are developed, and data from a variety of fluid dynamic sources are assessed to yield the governing parameters for mean flow, turbulence and mixture fraction. New data for lifted flames on a methane jet in diffusing streams of co-flowing air are then presented. These data provide essential information on the intermittency, and on the properties of the jet conditioned on the presence of turbulent fluid. However, the co-flow lifts the flame to stabilize in better-mixed regions than in its absence. The ‘premixture’ model is confirmed for this situation, in which the lift-off heights were more than 20 jet diameters and where there is little intermittency at the stabilization radius. Nevertheless, mixing data for this geometry in the absence of a flame show that, with lift-off heights less than 20 jet diameters, the base of the flame would have been in the outer regions of the jet where the mixture of fuel in air only reaches stoichiometric proportions intermittently, with the passage of large eddies. Trading on many papers from the recent literature where this was the case, both experimental and computational insights as to the processes in this region are reviewed. A question remains about how ignition is maintained in these experiments with low turbulent lift-off. It is hypothesized that the mechanism is the diffusive heating of the slowly moving surrounding air which then provides an energy store for the incoming eddies. Further time-resolved observations of reaction zone and high temperature gas structure are required to test this model.  相似文献   

10.
11.
《Combustion and Flame》2001,124(1-2):311-325
We have investigated lifted triple flames and addressed issues related to flame stabilization. The stabilization of nonpremixed flames has been argued to result due to the existence of a premixing zone of sufficient reactivity, which causes propagating premixed reaction zones to anchor a nonpremixed zone. We first validate our simulations with detailed measurements in more tractable methane–air burner-stabilized flames. Thereafter, we simulate lifted flames without significantly modifying the boundary conditions used for investigating the burner-stabilized flames. The similarities and differences between the structures of lifted and burner-stabilized flames are elucidated, and the role of the laminar flame speed in the stabilization of lifted triple flames is characterized. The reaction zone topography in the flame is as follows. The flame consists of an outer lean premixed reaction zone, an inner rich premixed reaction zone, and a nonpremixed reaction zone where partially oxidized fuel and oxidizer (from the rich and lean premixed reaction zones, respectively) mix in stoichiometric proportion and thereafter burn. The region with the highest temperatures lies between the inner premixed and the central nonpremixed reaction zone. The heat released in the reaction zones is transported both upstream (by diffusion) and downstream to other portions of the flame. Measured and simulated species concentration profiles of reactant (O2, CH4) consumption, intermediate (CO, H2) formation followed by intermediate consumption and product (CO2, H2O) formation are presented. A lifted flame is simulated by conceptualizing a splitter wall of infinitesimal thickness. The flame liftoff increases the height of the inner premixed reaction zone due to the modification of the upstream flow field. However, both the lifted and burner-stabilized flames exhibit remarkable similarity with respect to the shapes and separation distances regarding the three reaction zones. The heat-release distribution and the scalar profiles are also virtually identical for the lifted and burner-stabilized flames in mixture fraction space and attest to the similitude between the burner-stabilized and lifted flames. In the lifted flame, the velocity field diverges upstream of the flame, causing the velocity to reach a minimum value at the triple point. The streamwise velocity at the triple point is ≈0.45 m s−1 (in accord with the propagation speed for stoichiometric methane–air flame), whereas the velocity upstream of the triple point equals 0.7 m s−1, which is in excess of the unstretched flame propagation speed. This is in agreement with measurements reported by other investigators. In future work we will address the behavior of this velocity as the equivalence ratio, the inlet velocity profile, and inlet mixture fraction are changed.  相似文献   

12.
To understand hydrogen jet liftoff height, the stabilization mechanism of turbulent lifted jet flames under non-premixed conditions was studied. The objectives were to determine flame stability mechanisms, to analyze flame structure, and to characterize the lifted jet at the flame stabilization point. Hydrogen flow velocity varied from 100 to 300 m/s. Coaxial air velocity was regulated from 12 to 20 m/s. Simultaneous velocity field and reaction zone measurements used, PIV/OH PLIF techniques with Nd:YAG lasers and CCD/ICCD cameras. Liftoff height decreased with increased fuel velocity. The flame stabilized in a lower velocity region next to the faster fuel jet due to the mixing effects of the coaxial air flow. The non-premixed turbulent lifted hydrogen jet flames had two types of flame structure for both thin and thick flame base. Lifted flame stabilization was related to local principal strain rate and turbulent intensity, assuming that combustion occurs where local flow velocity and turbulent flame propagation velocity are balanced.  相似文献   

13.
Three theories of the liftoff of a turbulent jet flame were assessed using cinema-particle imaging velocimetry movies recorded at 8000 images/s. The images visualize the time histories of the eddies, the flame motion, the turbulence intensity, and streamline divergence. The first theory assumes that the flame base has a propagation speed that is controlled by the turbulence intensity. Results conflict with this idea; measured propagation speeds remains close to the laminar burning velocity and are not correlated with the turbulence levels. Even when the turbulence intensity increases by a factor of 3, there is no increase in the propagation speed. The second theory assumes that large eddies stabilize the flame; results also conflict with this idea since there is no significant correlation between propagation speed and the passage of large eddies. The data do support the “edge flame” concept. Even though the turbulence level and the mean velocity in the undisturbed jet are large (at jet Reynolds numbers of 4300 and 8500), the edge flame creates its own local low-velocity, low-turbulence-level region due to streamline divergence caused by heat release. The edge flame has two propagation velocities. The actual velocity of the flame base with respect to the disturbed local flow is found to be nearly equal to the laminar burning velocity; however, the effective propagation velocity of the entire edge flame with respect to the upstream (undisturbed) flow exceeds the laminar burning velocity. A simple model is proposed which simulates the divergence of the streamlines by considering the potential flow over a source. It predicts the well-established empirical formula for liftoff height, and it agrees with experiment in that the controlling factor is streamline divergence, and not turbulence intensity or large eddy passage. The results apply only to jet flames for Re<8500; for other geometries the role of turbulence could be larger.  相似文献   

14.
Quantitative measurements of OH concentration time series are presented for turbulent lean-premixed, methane-air jet flames theoretically in the thickened preheat regime. Picosecond time-resolved laser-induced fluorescence (PITLIF) reveals unique differences between these premixed flames and previous non-premixed jet flames. Time-averaged [OH] measurements are used to identify mean flame structures and to discern how these structures are affected by varying bulk flow velocities and heat release. More importantly, hydroxyl time series are inspected to distinguish among three main regions in these turbulent premixed flames. These regions include the reacting side of the flame brush, the mixing side of the flame brush (radially outside the location of heat release), and above the flame tip. Although the main reaction zone appears to be broadened by its associated high turbulent intensity, a combination of statistical analysis plus flamelet simulations suggests that the primary internal structure responsible for the OH distribution remains constant across the mean flame brush. Therefore, the absolute concentration of OH depends principally on the intermittency of this instantaneous internal structure. Outside the mean flame brush, mixing of OH with co-flow air shifts the distribution of absolute OH concentrations. Distinct autocorrelation functions are found within the three different regions identified for these premixed flames. Across the flame brush, integral time scales are dominated by turbulent convection, as verified by flamelet simulations. Above the flame tip, integral time scales are determined by a competition between turbulent convection and the reaction rate for OH destruction.  相似文献   

15.
Lifted methane-air jet flames in a vitiated coflow   总被引:4,自引:0,他引:4  
The present vitiated coflow flame consists of a lifted jet flame formed by a fuel jet issuing from a central nozzle into a large coaxial flow of hot combustion products from a lean premixed H2/air flame. The fuel stream consists of CH4 mixed with air. Detailed multiscalar point measurements from combined Raman-Rayleigh-LIF experiments are obtained for a single base-case condition. The experimental data are presented and then compared to numerical results from probability density function (PDF) calculations incorporating various mixing models. The experimental results reveal broadened bimodal distributions of reactive scalars when the probe volume is in the flame stabilization region. The bimodal distribution is attributed to fluctuation of the instantaneous lifted flame position relative to the probe volume. The PDF calculation using the modified Curl mixing model predicts well several but not all features of the instantaneous temperature and composition distributions, time-averaged scalar profiles, and conditional statistics from the multiscalar experiments. A complementary series of parametric experiments is used to determine the sensitivity of flame liftoff height to jet velocity, coflow velocity, and coflow temperature. The liftoff height is found to be approximately linearly related to each parameter within the ranges tested, and it is most sensitive to coflow temperature. The PDF model predictions for the corresponding conditions show that the sensitivity of flame liftoff height to jet velocity and coflow temperature is reasonably captured, while the sensitivity to coflow velocity is underpredicted.  相似文献   

16.
Partially premixed combustion is involved in many practical applications, due to partial premixing of combustible and oxidant gases before ignition, or due to local extinctions, which lead to mixing of reactants and burned gases. To investigate some features of flames in stratified flows, the stabilization processes of lifted turbulent jet flames are studied. This work offers a large database of liftoff locations of flames stabilized on turbulence-free jets for different fuels and nozzle diameters studied over their flame stability domains. Methane, propane, and ethylene flames are investigated for nozzle diameters of 2, 3, 4, and 5 mm. Blowout velocities are measured and compared with an approach based on large-scale structures of the jet. The axial and radial locations of the flame base are measured by planar laser-induced fluorescence (PLIF) of the OH radical through high sampling (at least 5000 points). From this large database the average locations of the flame base are analyzed for the fuels investigated. The pdfs exhibit an evolution of their shapes according to the region of the turbulent jet where the flame stabilizes (potential core, transition to turbulence, or fully developed turbulence regions). This dependence is probably due to the interaction of the flame with the jet structures. This is confirmed by the comparison between the amplitude of the height fluctuations and the local size of the large-scale structures deduced from particle image velocimetry measurements and self-similarity laws for velocity. The results show the flame can be carried over a distance equal to the local diameter of the jet within the region of fully developed turbulence for propane and ethylene, and over a slightly larger distance for methane.  相似文献   

17.
The centerbody burner was designed with the objective of understanding the coupled processes of formation, growth, and burn-off of soot through decoupling them using recirculation zones (RZs). Experimentally it was found that the sooting characteristics of the centerbody burner could be altered dramatically via simple changes in the operating conditions. One of the interesting operating regimes in which a flame lifts off and forms a column of soot was identified when oxygen in the annulus air jet was reduced sufficiently. This paper describes the numerical studies performed to aid the understanding of lifted flames in the centerbody burner. A time-dependent, axisymmetric, detailed-chemistry CFD model is used. Combustion and PAH formation are modeled using the Wang–Frenklach (99 species and 1066 reactions) mechanism, and soot is simulated using a two-equation model of Lindstedt. Calculations have predicted the structure of the lifted flame very well. Two RZs [outer (ORZ) and inner (IRZ)] are formed between the fuel and air jets. A diffusion flame that is lifted-off the centerbody plate anchors steadily to the outer periphery of the ORZ. A near-perfect match between the computed and measured flame lift-off heights is achieved. RZs transport soot that is formed in the flame toward the face of the centerbody and create the soot column. Ethylene and its lighter fuel fragments that are formed in the RZs diffuse toward the annulus air jet and establish a mixing layer with the inwardly diffusing oxygen. Heat diffusing away from the RZs initiates autoignition reactions in the mixing layer. A flame with a triple-flame-base structure becomes established at a location where the ignition-delay time matches the residence time. Soot that is transported into the RZs is found to have a significant effect on the flame lift-off height. Numerical experiments are performed to aid the understanding of the relationship between soot and flame lift-off. Radiation from the soot decreases the temperature, slows the autoignition process, and increases the lift-off height. Soot oxidation consumes O and OH radicals, slows the autoignition reactions, and increases the lift-off height.  相似文献   

18.
The stabilisation region of turbulent non-premixed flames of natural gas mixtures burning in a hot and diluted coflow is studied by recording the flame luminescence with an intensified high-speed camera. The flame base is found to behave fundamentally differently from that of a conventional lifted jet flame in a cold air coflow. Whereas the latter flame has a sharp interface that moves up and down, ignition kernels are continuously being formed in the jet-in-hot-coflow flames, growing in size while being convected downstream. To study the lift-off height effectively given these highly variable flame structures, a new definition of lift-off height is introduced. An important parameter determining lift-off height is the mean ignition frequency density in the flame stabilisation region. An increase in coflow temperature and the addition of small quantities of higher alkanes both increase ignition frequencies, and decrease the distance between the jet exit and the location where the first ignition kernels appear. Both mechanisms lower the lift-off height. An increase in jet Reynolds number initially leads to a significant decrease of the location where ignition first occurs. Higher jet Reynolds numbers (above 5000) do not strongly alter the location of first ignition but hamper the growth of flame pockets and reduce ignition frequencies in flames with lower coflow temperatures, leading to larger lift-off heights.  相似文献   

19.
The stability characteristics of a premixed, swirl-stabilized flame were studied to determine the effects of hydrogen addition on flame stability under fuel-lean conditions. The burner configuration consisted of a centerbody with an annular, premixed methane/air jet introduced through five, 45° swirl vanes. Flame stability was studied over a range of operating conditions. Under fuel-rich conditions the flame was lifted from the burner surface due to the mixing with entrained ambient air that was needed to form a flammable mixture. As the fuel/air mixture ratio was decreased toward stoichiometric, the resulting increase in flame speed allowed the flame to propagate upstream through the low-velocity wake region and attach to the centerbody face. The maximum blowout velocity occurred at stoichiometric conditions, and decreased as the mixture became leaner. OH PLIF measurements were used to study the behavior of OH mole fraction as the lean stability limit was approached. Near the lean stability limit the overall OH mole fraction decreased, the flame decreased in size and the high OH region took on a more shredded appearance. The addition of up to 20% hydrogen to the methane/air mixture resulted in a significant increase in the OH concentration and extended the lean stability limits of the burner.  相似文献   

20.
We investigated the behavior of the lifted flame on a bluff-body burner under the airflow dominant condition by the higher annular airflow velocity and the lower central fuel jet one and found the appearance of the hysteresis phenomenon in lift-off height of the flame that depends on the history of the fuel jet velocity. The hysteresis behavior is entirely different from the case of the fuel flow dominant condition by the higher central fuel jet velocity and lower annular airflow one. The observation by shadowgraph revealed that the occurrence of the phenomenon has a relation to the interaction between the fuel jet and the recirculation airflow region on the burner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号