首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Polyethersulfone (PES) hollow fiber membranes were prepared by traditional dry‐wet spinning technique. Scanning electronic microscopy (SEM) was used to characterize membrane morphologies, and the membrane properties were evaluated via bubble point measurements and ultrafiltration experiments. The effects of spinning temperature on the morphologies and properties of PES fibers were investigated in detail. At a high spinning temperature, the obtained membrane structure consisting of a thin skin‐layer and loose sponge‐like sublayer endows PES membrane with not only good permeability, but also high solute rejection. Based on the determination of ternary phase diagrams and light transmittance curves, the relationship of membrane morphologies with thermodynamics and precipitation kinetics of membrane‐forming system was discussed. It was concluded that the morphologies and properties of PES hollow fiber membrane could be conveniently tuned by the adjustment of the spinning temperature and air gap. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Spinnerettes for extrusion of large (~ 1 mm) internal diameter (i.d.) hollow fiber membranes must possess certain features to extrude fibers with the proper tensile and geometrical properties. Spinnerette designs that properly extrude small i.d. (< 200 μm) hollow fibers will produce large i.d. hollow fibers with low burst strengths because of poor flow patterns and insufficient time in the spinnerette to knit a strong seam interface. In this report, an alternative design is offered that provides much better fiber properties without creating high pressure drops or shear stresses at the spinnerette wall that would normally result in melt fracture. The equations that guide the presented spinnerette design are provided and the suggested design is successfully guided by the results. The new spinnerette design also has the feature of allowing rapid change of hollow fiber wall thickness by making the core fluid pin replaceable. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2157–2163, 2002  相似文献   

3.
Polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared using the solvent spinning method. N,N-dimethylacetamide was the solvent and ethylene glycol was employed as non-solvent additive. The effect of the concentration of ethylene glycol in the PVDF spinning solution as well as the effect of ethanol either in the internal or the external coagulant on the morphology of the hollow fibers was investigated. The prepared membranes were characterized in terms of the liquid entry pressure of water measurements, the gas permeation tests, the scanning electron microscopy, the atomic force microscopy, and the solute transport experiments. Ultrafiltration experiments were conducted using polyethylene glycol and polyethylene oxides of different molecular weights cut-off as solutes. A comparative analysis was made between the membrane characteristic parameters obtained from the different characterization techniques.  相似文献   

4.
Fabrication, morphology evaluation , and permeance/selectivity properties of three asymmetric BTDA‐TDI/MDI copolyimide hollow fiber membranes (HFM s ) are reported. The asymmetric HFM s were spun using the dry/wet phase inversion process. The effect of one of the major spinning parameters, the air gap, on the permeance/selectivity properties of the produced HFM was investigated. Scanning e lectron m icroscopy was used to evaluate the morphological characteristics and the macroscopic structure of the developed HFM. The permeance values of He, H2, CH4, CO2, O2, and N2 gases were measured by the variable pressure method at different feed pressures and temperatures and the permselectivity coefficients were calculated. The higher selectivity values were evaluated for the Μ1 membrane and were found to be 49.33, 2.99, 5.13, 5.57 , and 9.61 for H2/CH4, O2/N2, CO2/CH4, CO2/N2 , and H2/CO2 gas mixtures , respectively. The selectivity experiments of H2/CH4, CO2/CH4 , and O2/N2 mixtures were performed at 25 ° C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4490–4499, 2013  相似文献   

5.
Asymmetric niobium pentoxide (Nb2O5) hollow fiber membranes were prepared by the phase inversion and sintering process at temperatures ranging from 1000 to 1350°C. The effects of extrusion parameters on the morphology and properties of the produced membranes were systematically explored. Asymmetric hollow fibers with regular inner contour were obtained at extrusion flow rates of 15 and 25 ml min−1 of ceramic suspension and internal coagulant, respectively. Hollow fibers sintered at temperatures greater than 1200°C presented modifications in the morphology of Nb2O5 grains, which were also evidenced by X-ray diffraction and Raman analyses. Hollow fibers produced with an air gap of 50 mm presented a dense outer sponge-like layer and micro-voids formed from the inner surface. These hollow fibers sintered at 1200°C presented suitable bending resistance and water permeability (24.2 ± 0.60 MPa and 3.00 ± 0.01 L h-1 m-2 kPa-1, respectively). The outer sponge like layer was mitigated when the fibers were produced without air-gap.  相似文献   

6.
Polyethersulfone (PES) hollow‐fiber membranes were fabricated using poly(ethyleneglycol) (PEG) with different molecular weights (MW = PEG200, PEG600, PEG2000, PEG6000, and PEG10000) and poly(vinyl pyrrolidone) PVP40000 as additives and N‐methyl‐2‐pyrrolidone (NMP) as a solvent. Asymmetric hollow‐fiber membranes were spun by a wet phase‐inversion method from 25 wt % solids of 20 : 5 : 75 (weight ratio) PES/PEG/NMP or 18 : 7 : 75 of PES/(PEG600 + PVP40000)/NMP solutions, whereas both the bore fluid and the external coagulant were water. Effects of PEG molecular weights and PEG600 concentrations in the dope solution on separation properties, morphology, and mechanical properties of PES hollow‐fiber membranes were investigated. The membrane structures of PES hollow‐fiber membranes including cross section, external surface, and internal surface were characterized by scanning electron microscopy and the mechanical properties of PES hollow‐fiber membranes were discussed. Bovine serum albumin (BSA, MW 67,000), chicken egg albumin (CEA, MW 45,000), and lysozyme (MW 14,400) were used for the measurement of rejection. It was found that with an increase of PEG molecular weights from 200 to 10,000 in the dope solution, membrane structures were changed from double‐layer fingerlike structure to voids in the shape of spheres or ellipsoids; moreover, there were crack phenomena on the internal surfaces and external surfaces of PES hollow‐fiber membranes, pure water permeation fluxes increased from 22.0 to 64.0 L m?2 h?1 bar?1, rejections of three protein for PES/PEG hollow‐fiber membranes were not significant, and changes in mechanical properties were decreased. Besides, with a decrease of PEG600 concentrations in the dope solution, permeation flux and elongation at break decreased, whereas the addition of PVP40000 in the dope solution resulted in more smooth surfaces (internal or external) of PES/(PEG600 + PVP40000) hollow‐fiber membranes than those of PES/PEG hollow‐fiber membranes. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3398–3407, 2004  相似文献   

7.
The internal and external curved surfaces of polysulfone hollow fiber membranes were characterized by atomic force microscopy (AFM), contact angle measurement (CAM), and scanning electron microscopy (SEM) with the aim of improving the membrane surface properties for blood compatibility. Novel approaches were applied to evaluate a number of properties, including the roughness, pore size, nodule size, and wettability of the surfaces of the hollow fibers. CAM studies were carried out by directly observing the liquid meniscus at the surfaces of hollow fibers. Observation of the meniscus and measurement of the contact angle became possible by using an imaging system developed in our laboratory. AFM and SEM studies were also conducted on the surfaces of the hollow fiber membranes by cutting them at an inclined angle. The effect of the molecular weight of poly(ethylene glycol) (PEG) in the polymer blend on the surface properties of the hollow fibers was studied. Increasing the PEG molecular weight increased the average pore size whereas it decreased the contact angle. The contact angle depended on the microscopic surface morphology, including nodule size and roughness parameters. The theoretical prediction along with the experimental data showed that the measured contact angle would be greater than the value intrinsic to the membrane material because of the formation of composite surface structures. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4386–4400, 2006  相似文献   

8.
Ceramic hollow fiber membranes are investigated with respect to the fouling behavior. Constant pressure dead‐end filtration experiments have been performed using alginate as model substance for extracellular polymeric substances. In addition to the evaluation of the filtration data using conventional cake filtration model, nuclear magnetic resonance imaging (MRI) was used to elucidate the influence of Ca2+ on the fouling layer structure for alginate filtration within ceramic hollow fiber membranes. To visualize the alginate layers inside the opaque ceramic hollow fiber membranes by means of MRI, specific contrast agents were applied. Supplementary to multi slice multi echo imaging, flow velocity measurements were performed to gain more insight into the hydrodynamics in the fouled membranes. MRI reveals the structure of the alginate layers with the finding that the addition of Ca2+ to the alginate feed solution promotes the formation of a dense alginate gel layer on the membrane's surface. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2459–2467, 2016  相似文献   

9.
With the rapid development of membrane technology in water treatment, there is a growing demand for membrane products with high performance. The inorganic hollow fiber membranes are of great interest due to their high resistance to abrasion, chemical/thermal degradation, and higher surface area/volume ratio therefore they can be utilized in the fields of water treatment. In this study, the alumina (Al2O3) hollow fiber membranes were prepared by a combined phase-inversion and sintering method. The organic binder solution (dope) containing suspended Al2O3 powders was spun to a hollow fiber precursor, which was then sintered at elevated temperatures in order to obtain the Al2O3 hollow fiber membrane. The dope solution consisted of polyethersulfone (PES), Nmethyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP), which were used as polymer binder, solvent and additive, respectively. The prepared Al2O3 hollow fiber membranes were characterized by a scanning electron microscope (SEM) and thermal gravimetric analysis (TG). The effects of the sintering temperature and Al2O3/PES ratios on the morphological structure, pure water flux, pore size and porosity of the membranes were also investigated extensively. The results showed that the pure water flux, maximum pore size and porosity of the prepared membranes decreased with the increase in Al2O3/PES ratios and sintering temperature. When the Al2O3/PES ratio reached 9, the pure water flux and maximum pore size were at 2547 L/m2·h and 1.4 μm, respectively. Under 1600dgC of sintering temperature, the pure water flux and maximum pore size reached 2398 L/(m2·h) and 2.3 μm, respectively. The results showed that the alumina hollow fiber membranes we prepared were suitable for the microfiltration process. The morphology investigation also revealed that the prepared Al2O3 hollow fiber membrane retained its’asymmetric structure even after the sintering process.  相似文献   

10.
The mixture of inorganic salt LiCl and soluble polymer polyethylene glycol (PEG) 1500 as non-solvent additive was introduced to fabricate hydrophobic hollow fiber membrane of polyvinylidene fluoride (PVDF) by phase inversion process, using N,N-dimethylacetamide (DMAc) as solvent and tap water as the coagulation medium. Compared with other three membranes from PVDF/DMAc, PVDF/DMAc/LiCl and PVDF/DMAc/PEG 1500 dope solution, it can be observed obviously by scanning electron microscope (SEM) that the membrane spun from PVDF/DMAc/LiCl/PEG 1500 dope had longer finger-like cavities, ultra-thin skins, narrow pore size distribution and porous network sponge-like structure owing to the synergistic effect of LiCl and PEG 1500. Besides, the membrane also exhibited high porosity and good hydrophobicity. During the desalination process of 3.5 wt% sodium chloride solution through direct contact membrane distillation (DCMD), the permeate flux achieved 40.5 kg/m2 h and the rejection of NaCl maintained 99.99% with the feed solution at 81.8 °C and the cold distillate water at 20.0 °C, this performance is comparable or even higher than most of the previous reports. Furthermore, a 200 h continuously desalination experiment showed that the membrane had stable permeate flux and solute rejection, indicating that the as-spun PVDF hollow fiber membrane may be of great potential to be utilized in the DCMD process.  相似文献   

11.
A mathematical analysis of the permeate flux decline during microfiltration of fruit juice with hollow fibers under turbulent flow is presented. Impact of complex fluid flow phenomena on mass transfer is analyzed. A comprehensive analytical model for developing concentration boundary layer was formulated from first principles using integral method. Attempts to model the system considering constant boundary layer thickness (film theory) is inaccurate for developing boundary layer. Gel resistance parameter depending on juice characteristics has significant impact on permeate flux. Specific gel layer concentration has insignificant effect on system performance under total recycle mode but important for batch mode. Theoretical results were compared with experiments in clarification of pomegranate juice with poly(ether ether ketone) and polysulfone hollow fiber membranes. The physical parameters of complex mixture were evaluated by optimizing of the flux profiles in total recycle mode of operation and were successfully applied for prediction of batch mode performance. © 2014 American Institute of Chemical Engineers AIChE J 60: 4279–4291, 2014  相似文献   

12.
The inner and outer surfaces of a porous hollow fiber polysulfone support are compared as substrates for the synthesis of polyamide thin-film composite (TFC) membranes by interfacial polymerization. While both surfaces have pores common of microfiltration membranes, the inner surface has a larger pore diameter than the outer surface (2,700 nm compared to 950 nm). The inner TFC membrane showed higher water nanofiltration permeance than the outer (2.20 ± 0.17 compared to 0.13 ± 0.03 L m−2 hr−1 bar−1). This was due to the influence of the porosity and roughness, which were different on both support surfaces. These membranes are interesting because they were synthesized in a hollow fiber support with a high membrane area per volume unit (~6,900 m2/m3) and the substrate used was commercial, which means that the TFC membrane obtained is suitable for industrial application. A mathematical simulation of the nanofiltration run with COMSOL Multiphysics 5.3 software confirmed the experimental trends observed.  相似文献   

13.
Hollow fiber membranes with a multibore configuration have demonstrated their advantages with high mechanical strength, easy module fabrication, and excellent stability for membrane distillation (MD). In this work, the microstructure of multibore fibers was optimized for vacuum MD (VMD). A microstructure consisting of a tight liquid contact surface and a fully porous cross‐section is proposed and fabricated to maximize the wetting resistance and VMD desalination performance. The new membrane exhibited a high VMD flux of 71.8 L m?2 h?1 with a 78°C model seawater feed. Investigations were also carried to examine various effects of VMD operational conditions on desalination performance. The 7‐bore membrane showed higher flux and superior thermal efficiency under the VMD configuration than the direct contact MD configuration. Different from the traditional single‐bore hollow fiber, the VMD flux of multibore membrane at the lumen‐side feed configuration was higher than that of the shell‐side feed due to the additional evaporation surface of multibore geometry. © 2013 American Institute of Chemical Engineers AIChE J, 60: 1078–1090, 2014  相似文献   

14.
In our recent study, pH‐sensitive polyethersulfone (PES) hollow fiber membranes were prepared by blending poly (acrylonitrile‐co‐acrylic acid) (PANAA), and the electroviscous effect had great effect on the water flux change. While the question remains: is the water flux change caused by the electroviscous effect for all the membranes with different pore sizes? Herein, pH‐sensitive hollow fiber membranes with different pore sizes were prepared. The pore size and the theoretic water flux were calculated through the ultrafiltration of polyethylene glycol (PEG) solution. Comparing the calculated fluxes and the experimental ones, we found that the water flux change was mainly caused by the pore size change at the pH value larger than pKa, while that was caused by both the pore size change and the electroviscous effect when pH value was smaller than the pKa, and the pore size change was caused by the ionization of the ? COOH in the copolymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
利用响应曲面法(RSM),以模拟标准海水(质量分数3.5%)为进水对中空纤维空气隙式膜蒸馏(AGMD-HF)海水淡化过程的影响因子和膜通量指标进行了模拟优化。通过面向中心复合设计法(CCD)实现了基于热料液进水温度、冷凝液进水温度和料液流量的实验优化设计,并建立了响应值与影响因子之间的二次多项式回归模型。方差分析(ANOVA)、RSM分析及实验响应值与预测值的对比验证了该模型对影响因子和膜通量模拟优化的可信度。进一步地,通过期望函数的引入确定了各影响因子最佳水平,并利用太阳能加热驱动过程实验进行验证。结果表明,ANOVA的决定系数R2达到0.986,p值则低于0.0001;实验膜通量与预测值平均误差仅为6.95%,产水电导率始终保持在10 μS·cm-1以下,脱盐率稳定在99.99%以上;最佳影响因子水平分别为83.5℃、13.2℃和60.2 L·h-1,在此条件下太阳能加热驱动过程膜通量达到6.47 L·m-2·h-1。该实验不仅为潜在可行的规模放大过程提供了可参照的操作参数,而且表明将太阳能引入AGMD-HF海水淡化过程具有很强的实际应用潜力。  相似文献   

16.
A novel braid‐reinforced (BR) poly(vinyl chloride) (PVC) hollow fiber membrane was fabricated via dry‐wet spinning process. The mixtures of PVC polymer solutions were uniformly coated on the tubular braid which contained polyester (PET) and polyacrylonitrile (PAN) fibers. The influences of braid composition on structure and performance of BR PVC hollow fiber membranes were investigated. The results showed that the prepared BR PVC hollow fiber membranes were composed of two layers which contained separation layer and tubular braid supported layer when the PET and PET/PAN hybrid tubular braids were used as the reinforcement. But the sandwich structure appeared when the PAN tubular braid was used as the reinforcement, which revealed outer separation layer, tubular braid supported layer and the inner polymer layer. The BR PVC hollow fiber membranes that prepared by PET/PAN hybrid tubular braid had favorable interfacial bonding state compared with the membrane prepared by pure PET or PAN tubular braid. The pure water flux of the BR PVC hollow fiber membranes that prepared by the PET/PAN hybrid tubular braid were lower than that prepared by pure PET or PAN tubular braid, but the rejection of Bovine serum albumin was opposite. The tensile strength of prepared BR PVC hollow fiber membrane was higher than 50 MPa. Both of the tensile strength and elongation at break decreased with the increase of the PAN filaments in the PET/PAN hybrid tubular braid. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45068.  相似文献   

17.
The objectives of this work are, fundamentally, to understand hollow fiber membrane formation from an engineering aspect, to develop the governing equations to describe the velocity profile of nascent hollow fiber during formation in the air gap region, and to predict fiber dimension as a function of air‐gap distance. We have derived the basic equations to relate the velocity profile of a nascent hollow fiber in the air‐gap region as a function of gravity, mass transfer, surface tension, drag forces, spinning stress, and rheological parameters of spinning solutions. Two simplified equations were also derived to predict the inner and outer diameters of hollow fibers. To prove our hypotheses, hollow fiber membranes were spun from 20 : 80 polybezimidazole/polyetherimide dopes with 25.6 wt % solid in N,N‐dimethylacetamide using water as the external and internal coagulants. We found that inner and outer diameters of as‐spun fibers are in agreement with our prediction. The effects of air‐gap distance or spin‐line stress on nascent fiber morphology, gas performance, and mechanical and thermal properties can be qualitatively explained by our mathematical equations. In short, the spin‐line stresses have positive or negative effects on membrane formation and separation performance. A high elongational stress may pull molecular chains or phase‐separated domains apart in the early stage of phase separation and create porosity, whereas a medium stress may induce molecular orientation and reduce membrane porosity or free volume. Scanning electron microscopic photographs, coefficient of thermal expansion, and gas selectivity data confirm these conclusions. Tg of dry‐jet wet‐spun fibers is lower than that of wet‐spun fibers, and Tg decreases with an increase in air‐gap distance possibly because of the reduction in free volume induced by gravity and elongational stress. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 379–395, 1999  相似文献   

18.
Isoporous asymmetric polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) hollow fiber membranes were successfully made by a dry-jet wet spinning process. Well-defined nanometer-scale pores around 20–40 nm in diameter were tailored on the top surface of the fiber above a non-ordered macroporous layer by combining block copolymer self-assembly and non-solvent induced phase separation (SNIPS). Uniformity of the surface-assembled pores and fiber cross-section morphology was improved by adjusting the solution concentration, solvent composition as well as some important spinning parameters such as bore fluid flow rate, polymer solution flow rate and air gap distance between the spinneret and the precipitation bath. The formation of the well-organized self-assembled pores is a result of the interplay of fast relaxation of the shear-induced oriented block copolymer chains, the rapid evaporation of the solvent mixture on the outer surface and solvent extraction into the bore liquid on the lumen side, and gravity force during spinning. Structural features of the block copolymer solutions were investigated by small-angle X-ray scattering (SAXS) and rheological properties of the solutions were examined as well. The scattering patterns of the optimal solutions for membrane formation indicate a disordered phase which is very close to the disorder-order transition. The nanostructured surface and cross-section morphology of the membranes were characterized by scanning electron microscopy (SEM). The water flux of the membranes was measured and gas permeation was examined to test the pressure stability of the hollow fibers.  相似文献   

19.
20.
Hollow fibers were spun from a solution of surface‐modifying macromolecule blended polyethersulfone in dimethyl acetamide by using dry‐wet spinning method at different air gaps and at room temperature. The air gap was varied from 10 to 90 cm. The ultrafiltration performance of hollow fibers was studied by using aqueous solutions of polyethylene glycols and polyethylene oxides of different molecular weights. Significant difference in surface morphology between the inner and outer surface of the hollow fibers was observed by atomic force microscopy (AFM). Similar results were obtained by contact angle measurement and XPS. Mean pore sizes of the inner surface and outer surface were calculated from AFM images and compared with the pore sizes obtained from mass transport data. Pore size distribution curves were drawn from both data, i.e., from AFM images and mass‐transport data, both methods gave similar results. Roughness parameters of the inner and outer surfaces and the sizes of nodular aggregates on both surfaces were measured. An attempt was made to correlate the above parameters with the performance of the membranes. Unexpected values of contact angles of both inner surface and outer surface were obtained. It was observed that the studied membranes could be put into two groups: (i) the membranes fabricated between 10 and 50 cm air gap and (ii) fabricated at higher than 50 cm air gap. A plausible mechanism for the unexpected results was discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 710–721, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号