首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper we consider the robustly stabilizing control of a 1000l draft tube baffled crystallizer. When operated at high fines dissolution rates, the crystallizer exhibits sustained oscillations. A detailed population balance model for the process can be found in the literature. Based on this detailed model we develop a simpler population balance model. This, in turn, permits the derivation of an irrational transfer function from manipulated to measured variable. An H mixed sensitivity minimization problem is formulated and solved using an infinite-dimensional version of H theory. Two different controllers are designed and compared in simulation studies.  相似文献   

2.
Control of crystal size distribution (CSD) in a 21.8 L continuous cooling KCl crystallizer was attempted. Feed saturated at 54°C with potash, nearly saturated with NaCl and containing 0.75 g MgSO4/100 g of H2 O was cooled to the crystallizer temperature at 40°C. The control scheme consisted of a proportional-integral controller with the rate of fines dissolution/removal as the input variable and the fines suspension density (crystals smaller than 150 μm) as the output variable. The measured/controlled variable was a temperature difference, ΔT, corresponding to the temperature of a slurry sample containing representative fines, before and after the fines were dissolved by heating. An increase in the product weight-mean crystal size and a decrease in the coefficient of variation of product were observed in the controlled runs.  相似文献   

3.
4.
Ryoichi Kurose  Hisao Makino 《Fuel》2004,83(6):693-703
A three-dimensional numerical simulation is applied to a pulverized coal combustion field in a test furnace equipped with an advanced low-NOx burner called CI-α burner, and the detailed combustion characteristics are investigated. In addition, the validities of the existing NOx formation and reduction models are examined. The results show that a recirculation flow is formed in the high-gas-temperature region near the CI-α burner outlet, and this lengthens the residence time of coal particles in this high-temperature region, promotes the evolution of volatile matter and the progress of char reaction, and produces an extremely low-O2 region for effective NO reduction. It is also found that, by lessening the effect of NO reduction in Levy et al.'s model and taking the NO formation from char N into account, the accuracy of the NO prediction is improved. The efficiency factor of the conversion of char N to NO affects the total NO concentration downstream after the injection of staged combustion air.  相似文献   

5.
Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NOx) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NOx increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.  相似文献   

6.
Electrochemical oscillations during the anodic oxidation of formaldehyde (HCHO) were studied on a modified electrode of platinum particles highly dispersed in the three-dimensional pore networks of TiOx/Ti (Pt-TiOx/Ti). Under conditions of room temperature and stationary electrode, not only current oscillations under both cyclic voltammetric and potentiostatic conditions but also potential oscillations under galvanostatic conditions were obtained. The intensity of current oscillations strongly depends on the concentration of HCHO or H2SO4, upper potential limit (upl) of cyclic voltammetry, applied constant potential and duration of time (td) at constant potential. Potential oscillations exhibit various patterns such as periodic, quasi-periodic, mixed-mode oscillations and other different bifurcations, which are greatly effected by the applied constant current and the concentration of HCHO or H2SO4. Meanwhile, the oscillatory system has a bistable characteristic with stable states at both low and high potentials. The observed potential and current oscillations are caused by the cyclic formation/removal of intermediate poison CO from the electrode surface during HCHO oxidation. The highly dispersed Pt particles on the surface of Pt-TiOx/Ti electrode improve the electrocatalytic activity of the electrode, which greatly facilitates the formation of CO by the oxidation of HCHO and the removal of CO by its reaction with hydroxyl radicals (OH). Furthermore, the three-dimensional pore networks of the electrode's TiOx/Ti support are favorable to the adsorption/desorption of reactants or intermediate product and thus increase the rate of reactions giving rise to electrochemical oscillations.  相似文献   

7.
In order to clarify the controversies of hardening mechanism for TiN/SiNx-based nanocomposite films, the microstructure and hardness for TiN/SiNx and TiAlN/SiNx nanocomposite films with different Si content were studied. With the increase of Si content, the crystallization degree for two series of films firstly increases and then decreases. The microstructural observations suggest that when SiNx interfacial phase reaches to a proper thickness, it can be crystallized between adjacent TiN or TiAlN nanocrystallites, which can coordinate misorientations between nanocrystallites and grow coherently with them, resulting in blocking of the dislocation motions and hardening of the film. The microstructure of TiN/SiNx-based nanocomposite film can be characterized as the nanocomposite structure with TiN-based nanocrystallites surrounded by crystallized SiNx interfacial phase, which can be denoted by nc-TiN/c-SiNx model (''c’ before SiNx means crystallized) and well explain the coexistence between nanocomposite structure and columnar growth structure within the TiN/SiNx-based film.  相似文献   

8.
The effects of combustion driven acoustic oscillations in carbon monoxide and nitrogen oxides emission rates of a combustor operated with liquefied petroleum gas (LPG) were investigated. Because the fuel does not contain nitrogen, tests were also conducted with ammonia injected in the fuel, in order to study the formation of fuel NOx. The main conclusions were: (a) the pulsating combustion process is more efficient than the non-pulsating one and (b) the pulsating combustion process generates higher rates of NOx, with and without ammonia injection, as shown by CO and NO concentrations as function of the O2 concentration. An increase in the LPG flow rate, keeping constant the air to fuel ratio, increased the acoustic pressure amplitude and the frequency of oscillation. The injection of ammonia had no influence on either pressure amplitude or frequency.  相似文献   

9.
This paper presents the comparison of experimental results and computational fluid dynamics (CFD) simulations for a 600 MWe industrial pulverised coal power station. The power station measurements were made in a normal combustion mode and in an overfire air (OFA) mode. The agreement between the model and the data collected in the chimney is good; the NOx reduction modelled is in agreement with the measured one, but data taken in the flame show that the flame structure is imperfectly represented.  相似文献   

10.
C.M. NamB.M. Gibbs 《Fuel》2002,81(10):1359-1367
Diesel DeNOx experiments have been conducted using the selective noncatalytic ‘thermal DeNOx’ process in a diesel fuelled combustion-driven flow reactor which simulated a single cylinder (966 cm3) and head equipped with a water-cooling jacket and an exhaust pipe. NH3 was directly injected into the cylinder to reduce NOx emissions. A wide range of air/fuel ratios (A/F=20-40) was selected for NOx reduction where an initial NOx of 530 ppm was usually maintained with a molar ratio (β=NH3/NOx) of 1.5.The results indicate that a 34% NOx reduction can be achieved from the cylinder injection in the temperature range, 1100-1350 K. Most of the NOx reduction occurs within the cylinder and head section (residence time<40 ms), since temperatures in the exhaust are too low for additional NOx reduction. Under large gas quenching rates, increasing β values (e.g. 4.0) substantially increase the NOx reduction up to 60%, which is comparable with those achieved under isothermal conditions. Experimental findings are analysed by chemical kinetics using the Miller and Bowman mechanism including both N/H/O species and CO/hydrocarbon reactions to account for CO/UHC oxidation effects, based on practical nonisothermal conditions. Comparisons of the kinetic calculations with the experimental data are given as regards temperature characteristics, residence time and molar ratio. In addition, the effects of CO/UHC and branching ratio (α=k1/(k1+k2)) for the reaction NH2+NO=products are discussed in terms of NO reduction features, together with practical implications.  相似文献   

11.
This paper deals with the modeling and simulation of combustion processes and generation of NOx in a combustion chamber and boiler, with supplementary combustion in a gas turbine installation. The fuel burned in the combustion chamber was rich gas with a chemical composition more complex than natural gas. Pitcoal was used in the regenerative boiler. From the resulting combustion products, 17 compounds were retained, including nitrogen and sulphur compounds. Using the developed model, the simulation resulted in excess air for a temperature imposed at the combustion chamber exhaust. These simulations made it possible to determine the concentrations of combustion compounds with a variation in excess combustion.  相似文献   

12.
Modelling of the phenomena involved during the adsorption of NOx on NOx trap catalysts was developed. The aim of the model is the prediction of the quantity of stocked barium nitrate as well as the emissions of NO and NO2, as a function of time and temperature. The mechanism of the process is sounded on the adsorption of gas species (NO, NO2, O2) on platinum sites, equilibrium reaction between adsorbed species followed by the formation of Ba(NO3)2. This formation of barium nitrate is limited by the thermal decomposition reaction which liberates NO in the gas phase. The kinetic constant of decomposition of barium nitrate was determined by temperature programmed thermogravimetry on pure Ba(NO3)2, using the method of Freeman and Carroll. Other kinetic constants bound to the mechanism were estimated by fitting the results of the model to experimental results.The mechanism was validated for various values of the molar fraction of O2, the molar fraction of NO and various values of the NO/NO2 ratio in the gas entering the reactor. It was also tested with different catalyst compositions (variation of the platinum and BaO concentrations). The importance of oxygen in the process was clearly demonstrated as well as the promoting role of NO2.  相似文献   

13.
Xuezhong Jiang 《Polymer》2006,47(11):4124-4131
The incorporation of high levels of electroactive compounds into a high Tg matrix polymer was investigated in photovoltaic (PV) devices. The combination of electron donor-electron acceptor pairs with optionally light harvesting organics (e.g. laser dyes) in the high Tg polymer matrix yielded PV performance in the range of literature data typically reported for organic based PV devices. The advantages for using a high Tg matrix include increasing the Tg of the electroactive compounds, preventing crystallization, improving the mechanical properties of the active layer(s) and the ability to employ lower cost fabrication processes. While the basic concept has been demonstrated, further optimization would be required to achieve a useful combination of photovoltaic properties. As in the companion paper on utilization of a high Tg polymer to sequester low molecular weight electroactive species for LED devices, this paper demonstrates the same concept for PV devices. The approach to solve the issues with low molecular weight electroactive species noted in the literature to date often involves covalent bonding of these compounds to polymeric backbones. This and the companion paper well-illustrates the blend approach is equally viable and offers a much simpler methodology.  相似文献   

14.
The effects of impeller type and diameter in a batch cooling crystallizer on the nucleation and crystal growth kinetics as well as on the shape and size distribution of borax decahydrate crystals were investigated. Two different types of impellers of various sizes were applied. Chosen impeller configurations generate completely different fluid flow patterns in the crystallizer what allows to investigate the influence of the axial and radial flow on the kinetic parameters as well. The nucleation in crystallizer was taking place by the heterogeneous nucleation mechanism at all mixing conditions. The number of crystals formed by this mechanism increases as ratio D/dT decreases and it is higher when an axial flow pattern in crystallizer has been developed. The crystal growth rate increases with increasing the impeller size in observed supersaturation range. The radial impeller defined by ratio D2/dT = 0.58 could be considered as viable option for growth of borax crystal, since the further enlargement of this ratio does not increase growth rate and can only cause higher power consumption. The maxima in the coarser and finer fractions of CSD indicate a different influence of mixing conditions on the crystal grow and secondary nucleation. An axial flow pattern in crystallizer favors agglomeration of growing crystals increasing that way product mean crystal size, while radial flow results with more regular shape of borax crystals.  相似文献   

15.
A. Evdou  L. Nalbandian 《Fuel》2010,89(6):1265-1273
This work reports on the preparation and characterization of perovskitic materials with the general formula La1−xSrxFeO3 (x = 0, 0.3, 0.7, 1) for application in a dense mixed conducting membrane reactor process for simultaneous production of synthesis gas and pure hydrogen. Thermogravimetric experiments indicated that the materials are able to loose and uptake reversibly oxygen from their lattice up to 0.2 oxygen atoms per “mole” for SrFeO3 with x = 1 at 1000 °C. The capability of the prepared powders to convert CH4 during the reduction step, in order to produce synthesis gas, as well as their capability to dissociate water during the oxidation step, in order to produce hydrogen were evaluated by pulse reaction experiments in a fixed bed pulse reactor. The high sintering temperatures (1100-1300 °C) required for the densification of the membrane materials result in decreased methane conversion and H2 yields during the reduction step compared to the corresponding values obtained with the perovskite powders calcined at 1000 °C. Addition of small quantities of NiO, by simple mechanical mixing, to the perovskites after their sintering at high temperatures, increases substantially both their methane decomposition reactivity, their selectivity towards CO and H2 and their water splitting activity. Maximum H2 yield during the reduction step is achieved with the La0.7Sr0.3FeO3 sample mixed with 5% NiO and is 80% of the theoretically expected H2, based on complete methane decomposition. In the oxidation - water splitting step, 912 μmol H2 per gr solid are produced with the La0.3Sr0.7FeO3 sample mixed with 5% NiO. The experimental results of this work can be equally well applied for the “chemical-looping reforming” process since they concern using the lattice oxygen of the perovskite oxides for methane partial oxidation to syngas, in the absence of molecular oxygen, and subsequent oxidation of the solid.  相似文献   

16.
This work deals with the design and application of a neuro‐fuzzy controller of the magma density of the fine crystals for the stabilisation of the crystal size distribution (CSD) of the product from an MSMPR (Mixed Suspension, Mixed Product Removal) continuous crystallizer. The cooling crystallization of potassium sulphate from aqueous solutions in a pilot‐scale stirred vessel was investigated. A control strategy, based on the elimination of fines by using a combined sedimentation‐dissolution device, is presented. The control scheme was successfully applied to a pilot‐scale draft‐tube (DT) crystallizer and yielded promising results. The proposed process control system allowed the reduction of the fines fraction by more than 30 %, while maintaining operation stability and short transient responses.  相似文献   

17.
The electrochemical behaviors of Bi(III), Te(IV), Sb(III) and their mixtures in DMSO solutions were investigated using cyclic voltammetry and linear sweep voltammetry measurements. On this basis, BixSb2−xTey film thermoelectric materials were prepared by potentiodynamic electrodeposition technique from mixed DMSO solution, and the compositions, structures, morphologies as well as the thermoelectric properties of the deposited films were also analyzed. The results show that BixSb2−xTey compound can be prepared in a very wide potential range by potentiodynamic electrodeposition technique in the mixed DMSO solutions. After anneal treatment, the deposited film prepared in the potential range of −200 to −400 mV shows the highest Seebeck coefficient (185 μV/K), the lowest resistivity (3.34 × 10−5 Ω m), the smoothest surface, the most compact structure and processes the stoichiometry (Bi0.49Sb1.53Te2.98) approaching to the Bi0.5Sb1.5Te3 ideal material most. This Bi0.49Sb1.53Te2.98 film is a kind of nanocrystalline material and (0 1 5) crystal plane is its preferred orientation.  相似文献   

18.
Choeng Ryul Choi 《Fuel》2009,88(9):1720-323
The characteristics of the flow, combustion, temperature and NOx emissions in a 500 MWe tangentially fired pulverized-coal boiler are numerically studied using comprehensive models, with emphasis on fuel and thermal NOx formations. The comparison between the measured values and predicted results shows good agreement, which implies that the adopted combustion and NOx formation models are suitable for correctly predicting characteristics of the boiler. The relations among the predicted temperature, O2 and CO2 mass fractions are discussed based on the calculated distributions. The predicted results clearly show that NOx formation within the boiler highly depends on the combustion processes as well as the temperature and species concentrations. The results obtained from this study have shown that overfire air (OFA) operation is an efficient way to reduce the NOx emissions of the pulverized-coal fired boiler. Air staging combustion technology (OFA operation) adopted in this boiler has helped reduce fuel NOx formation as well as thermal NOx formation under the present simulated conditions. The decrease in the formation of fuel NOx is due to the decreased contact of the nitrogen from the fuel with the oxygen within the combustion air, while the decrease in thermal NOx formation is caused by a decrease in temperature. The detailed results presented in this paper may enhance the understanding of complex flow patterns, combustion processes and NOx emissions in tangentially fired pulverized-coal boilers, and may also provide a useful basis for NOx reduction and control.  相似文献   

19.
This work presents a systematic study for obtaining the optimal temperature profile in a continuous plug flow crystallizer (PFC). The proposed PFC consists of multiple segments where the temperature of each segment can be controlled individually. An optimization problem is formulated for a target crystal size distribution (without fines) with the temperature of the segments as decision variables. The results indicate that for the crystallization kinetics considered, dissolution steps are necessary for the reduction of fines due to nucleation. A systematic study on the form of growth and dissolution kinetics suggested that the key factor that determines whether the dissolution steps will be successful in reducing fines, without compromising the final size of the crystals from seed, is the size dependence of the growth and dissolution kinetics. Best fines removal is achieved when the larger crystals grow faster than the smaller ones and the smaller crystals dissolve faster than the larger ones. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4582–4594, 2013  相似文献   

20.
Amorphous LiCoO2 thin films were deposited on the NASICON-type glass ceramics, Li1+x+yAlxTi2−xSiyP3−yO12 (LATSP), by radio frequency (RF) magnetron sputtering below 180 °C. The as-deposited LiCoO2 thin films were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscope. All-solid-state Li/PEO18-Li (CF3SO2)2N/LATSP/LiCoO2/Au cells were fabricated using the amorphous film. The electrochemical performance of the cells was investigated by galvanostatic cycling, cyclic voltammetry, potentiostatic intermittent titration technique and electrochemical impedance spectroscopy. It was found that the amorphous LiCoO2 thin film shows a promising electrochemical performance, making it a potential application in microbatteries for microelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号