首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Very little information on the heat transfer to the ceiling of a circulating fluidized bed (CFB) boiler is available in the published literature though it constitutes a significant part of the furnace heat absorption. So, to explore this less-known heat transfer process a series of experiments were conducted at four different superficial gas velocities and three external solids circulation rates in a CFB pilot plant with a riser having a height of 5 m and a cross section of . The experimental results suggest that both solids circulation rates and superficial gas velocities had a significant influence on the local heat transfer to the ceiling close to the riser exit to the gas solids separator. However, on the ceiling, opposite of the exit, solids circulation rates and superficial gas velocities had only a minor influence on the local heat transfer coefficients.  相似文献   

2.
Flow behavior and flow regime transitions were determined in a circulating fluidized bed riser (0.203 m i.d. × 5.9 m high) of FCC particles (, ). A momentum probe was used to measure radial profiles of solids momentum flux at several heights and to distinguish between local net upward and downward flow. In the experimental range covered (; ), the fast fluidization flow regime was observed to coexist with dense suspension upflow (DSU). At a constant gas velocity, net downflow of solids near the wall disappeared towards the bottom of the riser with increasing solids mass flux, with dense suspension upflow achieved where there was no refluxing of solids near the riser wall on a time-average basis. The transition to DSU conditions could be distinguished by means of variations of net solids flow direction at the wall, annulus thickness approaching zero and flattening of the solids holdup versus Gs trend. A new flow regime map is proposed distinguishing the fast fluidization, DSU and dilute pneumatic transport flow regimes.  相似文献   

3.
Gas/solid and catalytic gas phase reactions in CFBs use different operating conditions, with a strict control of the solids residence time and limited back-mixing only essential in the latter applications. Since conversion proceeds with residence time, this residence time is an essential parameter in reactor modelling. To determine the residence time and its distribution (RTD), previous studies used either stimulus response or single tracer particle studies.The experiments of the present research were conducted at ambient conditions and combine both stimulus response and particle tracking measurements. Positron emission particle tracking (PEPT) continuously tracks individual radioactive tracer particles, thus yielding data on particle movement in “real time”, defining particle velocities and population density plots.Pulse tracer injection measurements of the RTD were performed in a 0.1 m I.D. riser. PEPT experiments were performed in a small ( I.D.) riser, using 18F-labelled sand and radish seed. The operating conditions varied from 1 to 10 m/s as superficial velocity, and 25- as solids circulation rate.Experimental results were compared with fittings from several models. Although the model evaluation shows that the residence time distribution (RTD) of the experiments shifts from near plug flow to perfect mixing (when the solids circulation rate decreases), none of the models fits the experimental results over the broad (U,G)-range.The particle slip velocity was found to be considerably below the theoretical value in core/annulus flow (due to cluster formation), but to be equal at high values of the solids circulation rate and superficial gas velocity.The transition from mixed to plug flow was further examined. At velocities near Utr the CFB-regime is either not fully developed and/or mixing occurs even at high solids circulation rates. This indicates the necessity of working at U> approx. ( to have a stable solids circulation, irrespective of the need to operate in either mixed or plug flow mode. At velocities above this limit, plug flow is achieved when the solids circulation rate . Solids back-mixing occurs at lower G and the operating mode can be described by the core/annulus approach. The relative sizes of core and annulus, as well as the downward particle velocity in the annulus (∼Ut) are defined from PEPT measurements.Own and literature data were finally combined in a core/annulus vs. plug flow diagram. These limits of working conditions were developed from experiments at ambient conditions. Since commercial CFB reactors normally operate at a higher temperature and/or pressure, gas properties such as density and viscosity will be different and possibly influence the gas-solid flow and mixing. Further tests at higher temperatures and pressures are needed or scaling laws must be considered. At ambient conditions, reactors requiring pure plug flow must operate at and . If back-mixing is required, as in gas/solid reactors, operation at and is recommended.  相似文献   

4.
The advantages from a 4-l external-loop inversed fluidized bed airlift bioreactor (EIFBAB) reported by Loh and Liu [2001. Chemical Engineering Science 56, 6171-6176] was synergized with preferential adsorption by granular activated carbon (GAC) for the enhanced cometabolic biotransformation of 4-chlorophenol (4-cp) in the presence of phenol as a growth substrate. This was achieved by incorporating a GAC fluidized bed in the lower part of the riser with the gas sparger relocated above this fluidized bed to avoid the presence of a 3-phase flow in the fluidized bed consequently providing larger gas holdup. Expanded polystyrene beads (EPS) were used as the supporting matrix for immobilizing Pseudomonas putida ATCC 49451, in the downcomer of the bioreactor. The hydrodynamics of the bioreactor system was characterized by studying the effect of the extent of valve opening, under cell-free condition, on gas holdup and liquid circulation velocity at different gas velocities and solids loading (EPS and GAC). The experimental data for gas holdup were modeled using power law correlations, while a Langmuir-Hinshelwood kinetics model was used for the liquid circulation velocity. The bioreactor was tested for batch cometabolic biotransformation of 4-cp in the presence of phenol at various concentration ratios of phenol and 4-cp (ranging from phenol: 4-cp to phenol: 4-cp) at 9% EPS loading and 2.8% (10 g) GAC loading. The 4-cp and phenol biotransformations were achieved successfully in the bioreactor system, which ascertained the feasibility of the bioreactor. Biotransformation of high 4-cp and phenol concentrations, which was oxygen limited, was also effectively achieved by increasing the gas holdup in the riser. This was possible in the current EFBAB system because of the synergistic effect of the GAC fluidized bed, the globe valve and cell immobilization by EPS.  相似文献   

5.
In the transporting square nosed slugging fluidization regime () a bed of polyethylene powder with a low density () and a large particle size distribution () was operated in two circulating fluidized bed systems (riser diameters 0.044 and 0.105 m). A relation was derived for the plug velocity as a function of the gas velocity, solids flux, riser diameter, particle size range and particle and powder properties. The influence of the plug length on the plug velocity, the raining rate of solids onto and from the plugs and the influence of the particle size range on the plug velocity is accounted for.  相似文献   

6.
A method is described to estimate solid mass flow rate based on measurement of pressure drop in horizontal section of circulating fluid bed (CFB). A theoretical model was derived based on momentum balance equation and used to predict the solids flow rate. Several approaches for formulating such models are compared and contrasted. A correlation was developed that predicts the solids flow rate as a function of pressure drop measured in the horizontal section of piping leading from the top of the riser to the cyclone, often referred to as the cross-over. Model validation data was taken from literature data and from steady state, cold flow, CFB tests results of five granular materials with various sizes and densities in which the riser was operated in core-annular and dilute flow regimes. Experimental data were taken from a 0.20 m ID cross-over piping and compared to literature data generated in a 0.10 m ID cross-over pipe. The solids mass flow rate data were taken from statistically designed experiments over a wide range of Froude number , load ratio , Euler number , density ratio , Reynolds number , and Archimedes number . Several correlations were developed and tested to predict the solids mass flux based on measuring pressure drop in the horizontal section of CFB. It was found that load ratio is a linear function of the Euler number and that each of these expressions all worked quite well (R2 > 95%) for the data within the range of conditions from which the coefficients were estimated.  相似文献   

7.
An experimental investigation of the solids flow pattern in gas-flowing solids-fixed bed contactors is presented. The apparatus and procedures for determining the dynamic and static solids holdups, solids residence time distribution and the extent and rate of the exchange between particles in the static and dynamic solids holdup are described in detail.Experiments were performed in a bench scale system, containing a column (diameter ) packed with glass beads of 16 mm in diameter packed up to the height of 0.8 m. Tracer experiments with a step input in flowing solids phase were used for determining the residence time distribution and exchange between particles. Fine solids (spheres with mean diameter of ) of two different colors (all other properties being the same) were used in the tracer experiments to determine the residence time distribution and the exchange between static and dynamic solids holdup. In both types of experiments, the response curves have been obtained via color analysis of digital photos. All experiments have been repeated at different operating conditions, with a broad variation of solids mass flux and gas velocity, and reproducibility at set conditions was checked.The obtained experimental results are discussed and the observed important characteristics of the solids flow pattern are outlined. The effects of the solids flux and gas velocity on the solids flow pattern are presented and analyzed.  相似文献   

8.
9.
A three-dimensional simulation of a dilute phase riser reactor (solid mass flux: ) is performed using a novel density based solution algorithm. The model equations consisting of continuity, momentum, energy and species balances for both phases, are formulated following the Eulerian-Eulerian approach. The kinetic theory of granular flow is applied. The gas phase turbulence is accounted for via a k-ε model. An extra transport equation describes the correlation between the gas and solid phase fluctuating motion. The solution algorithm allows a simultaneous integration of all the model equations in contrast to the sequential multi-loop solution in the conventional pressure based algorithms, used so far in riser simulations. The simulations show an unsteady behaviour of the flow, but a core-annulus flow pattern emerges on a time-averaged basis. The abrupt nature of the T type outlets causes a significant recirculation of gas and solid from the top of the riser. The flow near the outlets is highly non-symmetric and has a three-dimensional character. A significant decrease of the gas phase turbulence and particle granular temperature across the riser length is attributed to the presence of small particles, which is qualitatively consistent with the experimental data from literature.  相似文献   

10.
Counter-current gas diffusion measurements on a series of porous solids covering a broad range of pore sizes (mean pore radii between 78 nm and ) were performed in the Wicke-Kallenbach and Graham's diffusion cells. Mutual agreement of diffusion fluxes from both cells was found in the whole range of tested pore radii and inert gas systems. For pore materials with mean pore radii exceeding the experimentally unavoidable tiny total pressure gradient induces additional permeation flow which precludes the use of Graham's law for evaluation of transport parameters of the porous solids. Transport parameters together with 95% confidence regions were determined for porous materials with pore radii up to and the prevailing diffusion mechanism, intimately connected with the shape of confidence regions, was estimated.  相似文献   

11.
A dissolution process of solid particles suspended in a turbulent flow of a Rushton turbine stirred tank is studied numerically by large eddy simulations including passive scalar transport and particle tracking. The lattice-Boltzmann flow solver and the Smagorinsky subgrid-scale model are adopted for solving the stirred tank flow. To the LES a finite volume scheme is coupled that solves the convection-diffusion equation for the solute. The solid particles are tracked in the Eulerian flow field through solving the dynamic equations of linear and rotational motion of the particles. Particle-particle and particle-wall collisions are included, and the particle transport code is two-way coupled. The simulation has been restricted to a lab-scale tank with a volume equal to . A set of 7×106 spherical particles in diameter are released in the top part of the tank (10% of the tank volume), resulting in a local initial solids volume fraction of 10%. The particle properties are such that they resemble those of calcium chloride beads. The focus is on solids and scalar concentration distributions, particle size distributions, and the dissolution time. For the particular process considered, the dissolution time is found to be at most one order of magnitude larger than the time needed to fully disperse the solids throughout the tank.  相似文献   

12.
Simultaneous adsorption of SO2-NOx in a riser configuration is a novel route for flue gas cleaning. The riser operates at a low flux of small diameter Na-γ-Al2O3 sorbent particles. The reaction scheme is adopted from previous work (Ind. Eng. Chem. Res. 40 (2001) 119), without adjusting any of the kinetic parameters. The significant concentration gradient between the gas and solid phase mainly arises from the low solid fraction (typically 5×10−4) in the riser. Enhancing the fluctuating kinetic motion of gas and solid phase increases the SO2 adsorption, whereas the NO adsorption is decreased marginally. The solid recirculation in the top section of the riser, induced by the abrupt T outlets, significantly decreases the NO and NO2 removal, while the SO2 removal remains mostly unaffected. Therefore, it is desirable to avoid recirculation for a maximum NOx removal. A comparison of the 3D and a 1D model shows that higher SO2 and NO removal efficiencies are predicted by the 3D model in the major part of the riser. However, these positive effects are largely neutralized by the negative effects of the outlet-induced recirculation, resulting in similar overall removal efficiencies calculated by the two models. Unlike the 1D model, the 3D simulation shows a considerable axial variation in the solid fraction and slip velocity. The 3D simulation also allows to calculate the effects of outlet geometry on the flow and reaction fields. The reactor efficiency can be improved by modifying the outlet configuration to minimize the recirculation.  相似文献   

13.
Successful design and scale-up of Slurry Bubble Column Reactors (SBCRs) require proper understanding of how operating conditions affect their flow behavior. Presently, there is little information on the flow dynamics of solids (e.g., distribution of velocities and turbulent parameters) in slurry systems that are operated at industrially relevant conditions of high pressure, high superficial gas velocities, and high solids loading.Computer Automated Radio Particle Tracking (CARPT) is widely recognized as one of a few techniques that can be reliably used even in highly turbulent and opaque slurry flows. This work utilizes an improved CARPT technique to investigate the effect of reactor pressure (0.1-1 MPa) and superficial gas velocity (0.08-0.45 m/s) on solids phase velocity and shear stress in a pilot scale 0.16 m diameter stainless steel column using an air-water-glass beads () system. The solids axial velocity and shear stress were found to increase noticeably with pressure and superficial gas velocity in the churn turbulent flow regime.  相似文献   

14.
Three bubble column diameters (D=10.2, 15.2, and 32.1 cm) are employed to study the scale-up effect on gas holdup in air-water and air-water-cellulose fiber (hardwood, softwood, and BCTMP) systems. The effect of column diameter depends on flow regime and fiber mass fraction. When , gas holdup decreases with increasing column diameter for the transitional and heterogeneous flow regime, and column diameter effects are negligible in the homogeneous flow regime. When , gas holdup is only affected by column diameter in the transitional flow regime for an air-water system and low fiber mass fraction suspensions (C?0.25%); column diameter effects disappear at medium fiber mass fractions (e.g., C=0.8%) but are significant at high fiber mass fractions (e.g., C=1.4%).  相似文献   

15.
Fine powders (Geldart's group C) are added to a circulating fluidized bed (CFB) of coarse particles (Geldart's group A) and the solid circulation rate (SCR) is investigated with addition of fine powders of different sizes and different fractions (different hold-ups) to the bed. Experiments were carried out in a CFB of 2 m in height and 0.052 m in diameter, using FCC catalyst particles of as the coarse particles and cohesive aluminum hydroxide powders of 0.5- as the fine powders. The effects of hold-up of fine powders in the bed, fine powders size, and superficial gas velocity on the SCR were investigated.The SCR strongly depended on the hold-up of fine powders of 0.5- in size and noticeably decreased with increasing the hold-up of fine powders under constant gas velocity. This dependency disappeared when the size of fine powders was larger than . Thus, depending on the size of fine powders added to the CFB, two distinct regions for the changes of SCR could be clearly identified.  相似文献   

16.
Hydrodynamic measurements were made in a bubbling fluidized bed operated at 550°C at three different excess gas velocities (0.15, 0.40 and ). The bed has a cross-sectional area of with an immersed tube bank consisting of 59 horizontal stainless steel tubes (AISI 304L), 21 of which are exchangeable, thus allowing erosion studies. Capacitance probe analysis was used to determine the mean bubble rise velocity, the mean bubble frequency, the mean pierced bubble length, the mean bubble volume fraction and the mean visible bubble flow rate. Tube wastage was calculated from roundness profiles obtained by stylus profilometry.A redistribution of the bubble flow towards the center of the bed occurs when the excess gas velocity is increased. Measurements along a target tube, situated next to the capacitance probe, usually show greater material wastage at the central part of the tube, since the mean bubble rise velocity and the mean visible bubble flow rate are higher there. It is suggested that the greater material degradation is also an effect of the through-flow of a particle-transporting gas stream in the bubbles. With increasing height above the distributor plate the circumferential wastage profiles for the lowest excess gas velocity show a gradual change from an erosion pattern with one maximum (Type B behavior) to a pattern with two maxima (Type A behavior). Power spectral density distributions of the fluctuating pressure signals show that this is a result of the formation of larger bubbles, when the fluidization regime is changed in the upper part of the bed. At the highest excess gas velocity the bubble flow becomes more constrained due to a more rapid coalescence of the bubbles and the tubes show Type A wastage profiles throughout the bed.  相似文献   

17.
The distribution of flow between the annulus and the draft tube sections in a liquid phase spout-fluid bed with a draft tube was studied in a flat-based semi-circular column of diameter equipped with a semi-circular draft tube of diameter at superficial fluid velocities well above the minimum fluidization velocity. The particles used were glass spheres of diameter, and the spouting medium was tap water. A sodium chloride solution was injected into the reactor and the response recorded to determine the flow distribution between the draft tube and the annulus sections. The responses of the tracer injections prove that part of the flow originating from the annulus inlet leaks into the draft tube when any amount of annulus inlet flow is present. This finding makes a significant contribution to the understanding of the entrance region below a draft tube which has been modeled as a spout-fluid bed where fluid enters the annulus region based on the pressure distribution at the spout-annulus interface while the flow is in the radial direction from the spout into the annulus. This work shows that there is cross flow in the entrance region resulting in fluid exchange between the streams originating from the spouting inlet nozzle and the annulus inlet flow.The amount of leakage is found to increase with increasing inlet flow rates. An empirical correlation is developed to predict the fraction of the leakage of the annulus inlet flow. The superficial fluid velocity through the draft tube is found to vary linearly with the total flow rate through the bed under the experimental conditions studied. The pressure distributions in the entrance region favor the leakage of fluid from the annulus inlet flow into the draft tube.  相似文献   

18.
19.
20.
A spouted bed is simulated in three dimensions by a discrete element method (DEM) in a cylindrical coordinate system. The numerical scheme is based on a second order finite difference method in space and a second order Adams-Bashforth method for time advancement. Gas-particle interaction is assumed to obey the Ergun equation (for void fraction less than 0.8) and its corrected model by Wen and Yu (for void fraction greater than 0.8). The spouted bed vessel is a flat-bottomed cylinder in height and in diameter. The gas inlet diameter is . Three hundred thousand monosized spheres of diameter are used in the simulation. The typical characteristics of spouted beds, such as spout, annulus and fountain, are reproduced. Particle velocity profiles show good agreement with experimental results and self-similarity of the radial distribution of axial particle velocities is reported. Gas flow patterns are also studied and the effect a vortex ring fixed at the bottom of the vessel is investigated. The simulation is validated through comparisons with results reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号