首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Wen Cao  Danxing Zheng   《Fuel》2007,86(17-18):2864-2870
This paper proposes a novel power cycle system composed of chemical recuperative cycle with CO2–NG (natural gas) reforming and an ammonia absorption refrigeration cycle. In which, the heat is recovered from the turbine exhaust to drive CO2–NG reformer firstly, and then lower temperature heat from the turbine exhaust is provided with the ammonia absorption refrigeration system to generate chilled media, which is used to cool the turbine inlet gas except export. In this paper, a detailed thermodynamic analysis is carried out to reveal the performance of the proposed cycle and the influence of key parameters on performance is discussed. Based on 1 kg s−1 of methane feedstock and the turbine inlet temperature of 1573 K, the simulation results shown that the optimized net power generation efficiency of the cycle rises up to 49.6% on the low-heating value and the exergy efficiency 47.9%, the new cycle system reached the net electric-power production 24.799 MW, the export chilled load 0.609 MW and 2.743 kg s−1 liquid CO2 was captured, achieved the goal of CO2 and NOx zero-emission.  相似文献   

2.
Adsorption and separation of N2, CH4, CO2, H2 and CO mixtures in CMK-5 material at room temperature have been extensively investigated by a hybrid method of grand canonical Monte Carlo (GCMC) simulation and adsorption theory. The GCMC simulations show that the excess uptakes of pure CH4 and CO2 at 6.0 MPa and 298 K can reach 13.18 and 37.56 mmol/g, respectively. The dual-site Langmuir–Freundlich (DSLF) model was also utilized to fit the absolute adsorption isotherms of pure gases from molecular simulations. By using the fitted DSLF model parameters and ideal adsorption solution theory (IAST), we further predicted the adsorption separation of N2–CH4, CH4–CO2, N2–CO2, H2–CO, H2–CH4 and H2–CO2 binary mixtures. The effect of the bulk gas composition on the selectivity of these gases is also studied. To improve the storage and separation performance, we finally tailor the structural parameters of CMK-5 material by using the hybrid method. It is found that the uptakes of pure gases, especially for CO2, can be enhanced with the increase of pore diameter Di, while the separation efficiency is apparently favored in the CMK-5 material with a smaller Di. The selectivity at Di=3.0 nm and 6.0 MPa gives the greatest value of 8.91, 7.28 and 27.52 for SCO2/N2, SCH4/H2 and SCO2/H2, respectively. Our study shows that CMK-5 material is not only a promising candidate for gas storage, but also suitable for gas separation.  相似文献   

3.
S. Bari  M. Mohammad Esmaeil 《Fuel》2010,89(2):378-383
Using hydrogen as an additive to enhance the conventional diesel engine performance has been investigated by several researchers and the outcomes are very promising. However, the problems associated with the production and storage of pure hydrogen currently limits the application of pure hydrogen in diesel engine operation. On-board hydrogen-oxygen generator, which produces H2/O2 mixture through electrolysis of water, has significant potential to overcome these problems. This paper focuses on evaluating the performance enhancement of a conventional diesel engine through the addition of H2/O2 mixture, generated through water electrolysis. The experimental works were carried out under constant speed with varying load and amount of H2/O2 mixture. Results show that by using 4.84%, 6.06%, and 6.12% total diesel equivalent of H2/O2 mixture the brake thermal efficiency increased from 32.0% to 34.6%, 32.9% to 35.8% and 34.7% to 36.3% at 19 kW, 22 kW and 28 kW, respectively. These resulted in 15.07%, 15.16% and 14.96% fuel savings. The emissions of HC, CO2 and CO decreased, whereas the NOx emission increased.  相似文献   

4.
A microwave/UV/ozone/TiO2 photocatalyst hybrid process system, which is a combination of various propylene gas treatment techniques, is evaluated for use as an advanced, efficient technology for air pollution treatment. TiO2 photocatalyst balls were prepared using low-pressure metal-organic chemical vapor deposition. The microwave/UV/TiO2 photocatalyst hybrid process exhibited the higher degradation efficiency than the microwave/UV/alumina ball hybrid system. The degradation efficiency increased almost linearly with increasing ozone dose. The lower the propylene inlet concentration was the higher degradation efficiency. The double bond of propylene is broken by ozone and OH, resulting in production of CH4 and C2H6. These two intermediate products are mineralized into CO2, H2O, and CO. C2H4 and C3H8 may be produced from CH4, whereas C2H6 and C3H6 are produced by microwave irradiation.  相似文献   

5.
Fe2O3 is a promising oxygen carrier for hydrogen production in the chemical-looping process. A set of kinetic studies on reduction with CH4, CO and H2 respectively, oxidation with water and oxygen containing Ar for chemical-looping hydrogen production was conducted. Fe2O3 (20 wt.%)/ZrO2 was prepared by a co-precipitation method. The main variables in the TGA (thermogravimetric analyzer) experiment were temperatures and gas concentrations. The reaction kinetics parameters were estimated based on the experimental data. In the reduction by CH4, CO and H2, the reaction rate changed near FeO. Changes in the reaction rate due to phase transformation were observed at low temperature and low gas concentration during the reduction by CH4, but the phenomenon was not remarkable for the reduction by CO and H2. The reduction rate achieved using CO and H2 was relatively faster than achieved using CH4. The Hancock and Sharp method of comparing the kinetics of isothermal solid-state reactions was applied. A phase boundary controlled model (contacting sphere) was applied to the reduction of Fe2O3 to FeO by CH4, and a different phase boundary controlled model (contacting infinite slab) was fit well to the reduction of FeO to Fe by CH4. The reduction of Fe2O3 to Fe by CO and H2 can be described by the former phase boundary controlled model (contacting sphere). This phase boundary controlled model (contacting sphere) also fit well for the oxidation of Fe to Fe3O4 by water and FeO to Fe2O3 by oxygen containing Ar. These kinetics data could be used to design chemical-looping hydrogen production systems.  相似文献   

6.
Carbon nanotubes (CNTs) were synthesized using CH4/H2 plasmas and plasmas simulated using a one-dimensional fluid model. The thinnest and longest CNTs with the highest number density were obtained using CH4/H2 = 27/3 sccm at 10 Torr. These conditions allowed CNTs to grow for 90 min without any meaningful loss of catalyst activity. However, an excess H2 supply to the CH4/H2 mixture plasma made the diameter distribution of the CNTs wider and the yield lower. Hydrogen concentration is considered to affect catalyst particle size and activity during the time interval before starting CNT growth (=incubation period). With CH4/H2 = 27/3 sccm for a growth time of 10 min efficient CNT growth was achieved because the amount of carbon atoms in the CNTs and that calculated from simulation showed good agreement. The effect of hydrogen etching on CNTs was analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy by observing CNTs treated by H2 plasma after CNT growth. It was confirmed that (a) multi-walled CNTs were not etched by the H2 plasma, (b) the C 1s XPS spectra of the CNTs showed no chemical shift after the treatment, and (c) C-H bonds were produced in CNTs during their growth.  相似文献   

7.
The reactor performance of two novel fluidized bed membrane reactor configurations for hydrogen production with integrated CO2 capture by autothermal reforming of methane (experimentally investigated in Part 1) have been compared using a phenomenological reactor model over a wide range of operating conditions (temperature, pressure, H2O/CH4 ratio and membrane area). It was found that the methane combustion configuration (where part of the CH4 is combusted in situ with pure O2) largely outperforms the hydrogen combustion concept (oxidative sweeping combusting part of the permeated H2) at low H2O/CH4 ratios (<2) due to in situ steam production, but gives a slightly lower hydrogen production rate at higher H2O/CH4 ratios due to dilution with combustion products. The CO selectivity was always much lower with the methane combustion configuration. Whether the methane combustion or hydrogen combustion configuration is preferred depends strongly on the economics associated with the H2O/CH4 ratio.  相似文献   

8.
The effect of additions of gas phase H2O2 was measured for gas phase photocatalytic oxidation of organic vapors. Photocatalytic oxidation of benzene vapor over TiO2 in a flow reactor resulted in a quick catalyst deactivation. Additions of gas phase H2O2 into the reactor feed provided enhanced and sustained oxidation of benzene vapor. The increase of inlet H2O2 vapor concentration from 0 to about 1000 ppm led to the one order of magnitude growth of benzene vapor complete oxidation rate. The highest rate of 1.1 nmol/s was observed at C6H6 concentration 124 ppm and H2O2 concentration 1000 ppm. In the case of acetone vapor photocatalytic oxidation, the rate of complete oxidation in the flow reactor decreased with an increase of gas phase H2O2 inlet concentration. TiO2 Degussa P25 provided higher oxidation rate in the presence of H2O2 than pure anatase TiO2.  相似文献   

9.
In our previous work, we have investigated the adsorption selectivity of CH4/H2 in three pairs of isoreticular metal-organic frameworks (IRMOFs) with and without interpenetration to study the effect of interpenetration on gas mixture separation through Monte Carlo simulation. In addition, the self-diffusivities and the diffusion mechanism of single H2 and CH4 in these MOFs were examined by molecular dynamics simulations. In this work, we extend our previous work to mixed-ligand MOFs to investigate the effects of interpenetration as well as mixed-ligand on both equilibrium-based and kinetic-based gas mixture separation. We found that methane adsorption selectivity is much enhanced in the selected mixed-ligand interpenetrated MOFs compared with their non-interpenetrated counterparts, similar to what we found before for IRMOFs with single-ligand. At room temperature and atmospheric pressure, molecular-level segregation was observed in the mixed-ligand MOFs, and the extent of the effects of interpenetration is comparable for single-ligand and mixed-ligand MOFs. In addition, we found that the diffusion selectivity in the interpenetrated MOFs is similar to the one in their non-interpenetrated counterparts, while the permeation selectivity in the former is much higher than that in the latter, which corroborates our expectation that interpenetration is a good strategy to improve the overall performance of a material as a membrane in separation applications based only on the single component diffusion results. Furthermore, the CH4 permeability of the selected MOF membrane was also evaluated.  相似文献   

10.
The transition of diamond grain sizes from micron- to nano- and then to ultranano-size could be observed when hydrogen concentration is being decreased in the Ar/CH4 plasma. When grown in H2-rich plasma (H2 = 99% or 50%), well faceted microcrystalline diamond (MCD) surface with grain sizes of less than 0.1 μm are observed. The surface structure of the diamond film changes to a cauliflower-like geometry with a grain size of around 20 nm for the films grown in 25% H2-plasma. In the Ar/CH4 plasma, ultrananocrystalline diamond (UNCD) films are produced with equi-axed geometry with a grain size of 5-10 nm. The H2-content imposes a more striking effect on the granular structure of diamond films than the substrate temperature. The induction of the grain growth process, either by using H2-rich plasma or a higher substrate temperature increases the turn-on field in the electron field emission process, which is ascribed to the reduction in the proportion of grain boundaries.  相似文献   

11.
V.R. Choudhary  K.C. Mondal  T.V. Choudhary 《Fuel》2006,85(17-18):2484-2488
The oxy-CO2 methane reforming reaction (OCRM) has been investigated over CoOx supported on a MgO precoated highly macroporous silica–alumina catalyst carrier (SA-5205) at different reaction temperatures (700–900 °C), O2/CH4 ratios (0.3–0.45) and space velocites (20,000–100,000 cc/g/h). The reaction temperature had a profound influence on the OCRM performance over the CoO/MgO/SA-5205 catalyst; the methane conversion, CO2 conversion and H2 selectivity increased while the H2/CO ratio decreased markedly with increasing reaction temperature. While the O2/CH4 ratio did not strongly affect the CH4 and CO2 conversion and H2 selectivity, it had an intense influence on the H2/CO ratio. The CH4 and CO2 conversion and the H2 selectivity decreased while the H2/CO increased with increasing space velocity. The O2/CH4 ratio and the reaction temperature could be used to manipulate the heat of the reaction for the OCRM process. Depending on the O2/CH4 ratio and temperature the OCRM process could be operated in a mildly exothermic, thermal neutral or mildly endothermic mode. The OCRM reaction became almost thermoneutral at an OCRM reaction temperature of 850 °C, O2/CH4 ratio of 0.45 and space velocity of 46,000 cc/g/h. The CH4 conversion and H2 selectivity over the CoO/MgO/SA-5205 catalyst corresponding to thermoneutral conditions were excellent: 95% and 97%, respectively with a H2/CO ratio of 1.8.  相似文献   

12.
René Cyprès  Samuel Furfari 《Fuel》1982,61(8):721-724
Hydropyrolysis of a Beringen bituminous coal (VM, 32.8wt%) has been studied in a fixed bed reactor with different gas flows of H2-CH4 and H2-N2 mixtures. At 580 °C, various hydrogen partial pressures between 0 and 1 MPa were used with a total pressure of 1 and 4 MPa. Oil yield increased significantly with increasing hydrogen partial pressure. However, if the difference between partial and total pressure is too large, the oil yield is affected more by the total than the hydrogen partial pressure. Similar effects are observed for the yields of BTX, PCX and naphthalenes except that for the latter the total pressure does not have a significant effect. In the conditions investigated the methane is chemically inert. Thus it is possible to recycle the gas during coal hydropyrolysis with only a slight decrease of the yields.  相似文献   

13.
Atul Sharma  Kouichi Miura 《Fuel》2006,85(2):179-184
A novel Ni/carbon catalyst recently developed by the authors was used to gasify organic compounds dissolved in the wastewater with TOC concentration from 0.2 to 2%. The process removes the organic compounds by gasifying them into high calorific gases like methane and hydrogen. The investigations were focused on the efficiency of the Ni/carbon catalyst in terms of carbon conversion, conversion of big organic molecules, and catalyst deactivation due to sintering. The preliminary results showed that up to 99% carbon conversion can be achieved at 360 °C, and 20 MPa. A conversion mechanism was suggested which consists of: first, decomposition of big molecules to small molecules on the metal surface, steam gasification of small molecules to produce CO and H2 followed by CO methanation and CO shift reaction to produce CH4 and CO2. The catalyst was found to be highly active and stable and no sintering was observed even after 100 h of reaction time.  相似文献   

14.
The Fischer–Tropsch synthesis over Co/γ-Al2O3 and Co–Re/γ-Al2O3 was investigated in a fixed-bed reactor at 20 bar and 483 K using feed gases with molar H2/CO ratios of 2.1, 1.5 and 1.0 simulating synthesis gas derived from biomass. With lower H2/CO ratios in the feed, the CO conversion and the CH4 selectivity decreased, while the C5+ selectivity and olefin/paraffin ratio for C2–C4 increased slightly. The water–gas shift activity was low for both catalysts, resulting in high molar usage ratios of H2/CO (close to 2.0), even at the lower inlet ratios (i.e. 1.5 and 1.0). For both catalysts, the drop in the production rate of hydrocarbons when shifting from an inlet ratio of 2.1 to 1.5 was significant mainly because the H2/CO usage ratio did not follow the change in the inlet ratio. The hydrocarbon selectivities were rather similar for inlet H2/CO ratios of 2.1 and 1.5, while significantly deviating from those for an inlet ratio of 1.0. With the studied catalysts, it is possible to utilize the advantages of an inlet ratio of 1.0 (higher selectivity to C5+, lower selectivity to CH4, no water–gas shifting of the bio-syngas needed prior to the FT reactor) if a low syngas conversion is accepted.  相似文献   

15.
Parameters for the Wilson equation have been determined for 24 of the 28 binary pairs in the system: H2, N2, CO, CO2, CH4, H2S, CH3OH, and H2O. The data for eleven pairs were fit using the symmetric convention, with the remaining pairs satisfying the unsymmetric convention. Coefficients for the missing pairs could be estimated from Henry's Law constants. References have been included for the heat capacities of liquid methanol and carbon dioxide. Heats of mixing were also found in the literature. This information, plus readily available gas heat capacities, provides sufficient information to calculate multicomponent material and energy balances for the columns used in the separation of H2S and CO2 by cold methanol absorption.  相似文献   

16.
Formation of H2O2 from H2 and O2 and decomposition/hydrogenation of H2O2 have been studied in aqueous acidic medium over Pd/SiO2 catalyst in presence of different halide ions (viz. F, Cl and Br). The halide ions were introduced in the catalytic system via incorporating them in the catalyst or by adding into the reaction medium. The nature of the halide ions present in the catalytic system showed profound influence on the H2O2 formation selectivity in the H2 to H2O2 oxidation over the catalyst. The H2O2 destruction via catalytic decomposition and by hydrogenation (in presence of hydrogen) was also found to be strongly dependent upon the nature of the halide ions present in the catalytic system. Among the different halides, Br was found to selectivity promote the conversion of H2 to H2O2 by significantly reducing the H2O2 decomposition and hydrogenation over the catalyst. The other halides, on the other hand, showed a negative influence on the H2O2 formation by promoting the H2 combustion to water and/or by increasing the rate of decomposition/hydrogenation of H2O2 over the catalyst. An optimum concentration of Br ions in the reaction medium or in the catalyst was found to be crucial for obtaining the higher H2O2 yield in the direct synthesis.  相似文献   

17.
Roy D. Raharjo  Donald R. Paul 《Polymer》2007,48(25):7329-7344
Pure and mixed gas n-C4H10 and CH4 permeability coefficients in poly(1-trimethylsilyl-1-propyne) (PTMSP) are reported at temperatures from −20 to 35 °C. CH4 partial pressures range from 1.1 to 14.6 atm, and n-C4H10 partial pressures range from 0.02 to 1.8 atm. CH4 permeability decreases with increasing n-C4H10 upstream activity (f/fsat) in the feed. For example, at −20 °C, CH4 permeability decreases by more than an order of magnitude, from 52,000 to 1700 Barrer, as n-C4H10 activity increases from 0 to 0.73. In contrast, n-C4H10 mixed gas permeability is essentially unaffected by the presence of CH4. The depression of CH4 permeability in mixtures is a result of competitive sorption and blocking effects, which reduce both CH4 mixture solubility and diffusivity, respectively. Diffusion coefficients of n-C4H10 and CH4 in mixtures were calculated from mixture permeability and mixture solubility data. The CH4 concentration-averaged diffusion coefficient generally decreases as n-C4H10 activity increases. On the other hand, the n-C4H10 diffusion coefficient is essentially unaffected by the presence of CH4. Pure and mixed gas activation energies of permeation and diffusion of CH4 and n-C4H10 are reported. The mixed gas n-C4H10/CH4 permeability selectivity increases with increasing n-C4H10 activity and decreasing temperature, and it is higher than pure gas estimates would suggest. Mixture diffusivity selectivity also increases with increasing n-C4H10 activity. The difference between pure and mixed gas permeability selectivity arises from both solubility and diffusivity effects. The dual mode mixed gas permeability model describes the mixture permeability data reasonably well for n-C4H10. However, the model must be modified to accurately describe the methane data by accounting for the decrease in methane diffusivity due to the presence of n-C4H10 (i.e., blocking). Even though the penetrant concentrations are rather significant at some of the conditions considered, no evidence is observed for phenomena such as multicomponent coupling that would require a model more complex than the binary form of Fick's law. That is, Fick's law in its simplest form adequately describes the experimental data.  相似文献   

18.
The catalytic properties of granular activated carbon (GAC) in GAC/iron oxide/hydrogen peroxide (H2O2) system was investigated in this research. Batch experiments were carried out in de-ionized water at the desired concentrations of ethylene glycol and phenol. Rate constants for the degradation of hydrogen peroxide and the formation rate of iron species were determined and correlated with mineralization of ethylene glycol at various GAC concentrations. The observed first order degradation rate of hydrogen peroxide in the absence of iron oxide and organic matter increases linearity with the increasing of the GAC concentration. The decomposition rate of hydrogen peroxide was suppressed significantly as the solution pH became acidic or by reducing the surface area of the GAC. The reduction of the surface area was obtained by loading an organic compound (such as phenol) on the GAC or by using the oxidizing agent (H2O2). The addition of both chemicals, phenol and H2O2, affects mainly the surface area of the small pores, resulting in reducing the catalytic activity inside the micropores.The catalytic properties of the GAC were used to accelerate the formation rate of the ferrous ions, which is known in the literature to be the limiting rate reaction in the classic Fenton like reagent. It was shown that the ethylene glycol mineralization rate was increased by more than 50%.Finally, optimization of the GAC consumption leading to the fastest mineralization of the ethylene glycol, resulting in decreasing of the decomposition rate of H2O2 while enhancing the generation rate of ferrous ions.  相似文献   

19.
In this study, fresh water methane-producing bacterium (MPB), strain FJ10, which used H2 as an electron donor and CO2 as an electron acceptor, was isolated and chosen as the primary methanogen for the conversion of CO2 into CH4. Improvements to culture medium to increase methane production were investigated using a fractional factorial design in 32 experiments with six variables under consumption of H2/CO2 at ratios of 4 and 1. The tested nutrient compositions were NaCl, NH4Cl, FeSO4, MgCl2, H2PO4 and yeast extract. Experimental results indicate that yeast extract was essential for the growth of strain FJ10 to impact the conversion of CO2 into CH4. Strain FJ10 generated maximum CH4 production with 5.0 g/l of yeast extract. Moreover, optimal culture conditions for methane production by strain FJ10 were 40 °C and pH 8. Approximately 22-25% of CO2 conversion into CH4 was achieved at an H2/CO2 ratio of 4 and roughly 2.5-6% of CO2 conversion into CH4 was obtained at an H2/CO2 ratio of 1 under different pressurized conditions of 1 atm, 50 atm and 100 atm. Under 100 atm, about 6780 μM CH4 was produced with an H2/CO2 ratio of 4 and 4240 μM CH4 was produced with an H2/CO2 ratio of 1 under the steady state condition. The kinetic model for H2/CO2 utilization and CH4 production under different pressures was verified by experimental data. Model predictions are in good agreement with experimental results. The experimental and modeling approaches in this study can be applied to evaluate the conversion of CO2 into CH4 as an energy source by geo-microorganisms in geological sequestration.  相似文献   

20.
Chunfei Wu 《Fuel》2010,89(7):1435-1441
A novel Ni-Mg-Al-CaO catalyst/sorbent has been prepared by integration of the catalytic and CO2 absorbing properties of the material to maximise the production of hydrogen. The prepared catalyst was tested for hydrogen production from the pyrolysis-gasification of polypropylene by using a two-stage fixed-bed reaction system. X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM)-energy dispersive X-ray spectrometry (EDXS) were used to characterize the prepared Ni-Mg-Al-CaO catalyst/sorbent. Ni-Mg-Al-CaO and calcined dolomite showed a stable carbonation conversion after several cycles of carbonation/calcination, while CaO showed a certain degree of decay. The calcined dolomite showed low efficiency for hydrogen production from pyrolysis-gasification of polypropylene. Increasing the gasification temperature resulted in a decrease of H2/CO ratio for the Ni-Mg-Al catalyst mixed with sand; however, a stable H2/CO ratio (around 3.0) was obtained for the Ni-Mg-Al-CaO catalyst. An increased Ni-Mg-Al-CaO catalyst/polypropylene ratio promoted the production of hydrogen from the pyrolysis-gasification of polypropylene. Approximately 70 wt.% of the potential H2 production was obtained, when the Ni-Mg-Al-CaO catalyst/polypropylene ratio and gasification temperature were 5 and 800 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号