首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the effects of 35, 45, and 55 wt.% natural pozzolan addition on the properties of blended cement pastes and mortars were investigated. Blended cements with 450 m2/kg Blaine fineness were produced from a Turkish volcanic tuff in a laboratory mill by intergrinding portland cement clinker, natural pozzolan, and gypsum. The cements were tested for particle size distribution, setting time, heat of hydration, compressive strength, alkali-silica activity, and sulfate resistance. Cement pastes were tested by TGA for Ca(OH)2 content and by XRD for the crystalline hydration products. The compressive strength of the mortars made with blended cements containing large amounts of natural pozzolan was lower than that of the portland cement at all tested ages up to 91 days. Blended cements containing large amounts of pozzolan exhibited much less expansion with respect to portland cement in accelerated alkali-silica test and in a 36-week sulfate immersion test.  相似文献   

2.
The ASTM C227 test can be modified to develop performance tests for predicting potential alkali-silica reactivity of both portland and blended portland cements. The two methods of test investigated here differed mainly on the choice of the standard reactive aggregate, one using pyrex and the other a naturally occurring reactive silica. Low water/cement and aggregate/cement ratios were found helpful in accelerating expansion of mortar bars stored at 110F (43C). A 14-day test period was considered by the writers to be adequate for the evaluation of relative alkali-silica reactivity of a cement in the methods developed. Test data in 17 portland cements and 10 blended portland cements are reported to show that for this purpose performance tests may be more suitable than chemical specification limits.  相似文献   

3.
Although pozzolans, such as the Santorin earth, have been in use for over two thousand years for making cementitious products, the mechanism by which pozzolanic reactions contribute to the strength and chemical durability of mortars and concretes is not fully understood. Reported here are the results of an investigation in which portland pozzolan cements containing 10, 20, or 30 weight percent Santorin earth were used. Performance of the cements was evaluated with respect to strength development, drying shrinkage, sulfate resistance, and alkali-silica activity. The cement containing 20 percent pozzolan showed the highest compressive strength at 1 year, and the cements containing 20 or 30 percent pozzolan showed the least permeability and best resistance to sulfate attack. Microstructural investigations involving scanning electron microscopy, X-ray diffraction analysis, determination of free Ca(OH)2 present, and pore-size distribution were conducted on hydrated cement pastes for the purpose of understanding the factors responsible for the observed behavior of the cements. From the results, it is concluded that the process of pore refinement associated with pozzolanic reactions plays an important part in enhancing the strength and chemical durability of portland pozzolan cements. It is suggested that the rate at which pore refinement occurs in a hydrating pozzolan cements is not only useful as a measure of the activity of the pozzolan presen, but also for a more reliable prediction of the performance characteristics of the cement.  相似文献   

4.
This paper investigates the effect of particle size distribution on the properties of blended cements incorporating ground granulated blast-furnace slag (GGBFS) and natural pozzolan (NP). Pure Portland cement (PPC), NP and GGBFS were used to obtain blended cements that contain 10, 20, 30% additives. The cements were produced by intergrinding and separate grinding and then blending. Each group had two different Blaine fineness of 280 m2/g and 480 m2/g. According to the particle size distribution (PSD) curves, 46% of the coarser specimens and 69% of the finer specimens passed through the 20 μm sieve. It was observed that the separately ground specimens were relatively finer than the interground ones and had higher compressive strength and sulfate resistance. The separately ground coarser specimens had the lowest heat of hydration. The separately ground finer specimens, which had the highest compressive strength and sulfate resistance, had the highest percent passing for each sieve size. For these specimens 34, 69, 81 and 99% passed through 5, 20, 30 and 55 μm sieves, respectively. For the interground specimens, which had the same fineness, the respective values for the same sieves were 32, 68, 75 and 94%.  相似文献   

5.
The effect of three different natural pozzolans from Turkish deposits on the properties of blended cements produced by intergrinding cement clinker with a high volume of natural pozzolan (55 wt.% of the cementitious material) was investigated. The particle size distribution of blended cements, setting time, heat of hydration, and compressive strength of blended cement mortars were determined. Experimental results showed that the hardness of the pozzolanic material strongly influenced the particle size distribution and the related properties of the blended cements by affecting the fineness of the components of the blended product. The early strength of the mortars was strongly affected by the particle size distribution of blended cements, whereas the strength development performance of the mortars was more related to the pozzolanic activity of the natural pozzolan present in the blended cement.  相似文献   

6.
A mix containing fixed amounts of gypsum and ordinary portland cement clinker was ground in plant and laboratory ball mills to examine the effect of grinding in different mills on the cement properties. Mineralogical examination showed that in the plant mill (1200 cm×260 cm), because of the rising temperature during grinding, gypsum was dehydrated to hemihydrate, while there was no dehydration in the laboratory mill (45 cm×45 cm) grinding. Study of hydration of the cement pastes showed that the presence of hemihydrate increased the rate of ettringite formation. Hemihydrate also was rehydrated to gypsum and in the process retarded the setting times and reduced the strength development of the cement. This has been further confirmed by examination of cements prepared with gypsum, hemihydrate, and anhydrite.  相似文献   

7.
8.
Pastes and mortars of portland cements with varying fineness were studied. The effect of blending the cements with silica fume up to 10% is presented. Thermogravimetry, heat of hydration, X-ray diffraction, scanning electron microscopy, compressive strengths, and microhardness measurements were used to evaluate the pastes and mortars. The study reveals that properties and strengths of existing portland cements may be enhanced through the addition of silica fume. Coarse cements are benefited greatly through the blending. Energy savings during grinding may be realized through this process.  相似文献   

9.
The use of cements made with portland clinker and two or three additions has grown because they present several advantages over binary cements. Production of composite cements has produced a necessary shift in the manufacture process used in the cement industry. Now, it is known that the separate grinding and mixing technology is more convenient in order to produce these cements, called market-oriented or tailor-made cements. However, their optimum formulations require the help of methods of experimental design to obtain an appropriate performance for a given property with the least experimental effort.In this study, the interaction between limestone filler (LF) and blast-furnace slag (BFS) is analyzed in mortars in which portland cement (PC) was replaced by up to 22% LF and BFS. For this proposition, a two-level factorial design was used permitting to draw the isoresponse curves. Results show that compressive and flexural strength evaluated at 2, 7, 14, 28, 90 and 360 days are affected in different ways by the presence of mineral additions.  相似文献   

10.
The early hydration characteristics of slag cements (blends of separately ground granulated blast furnace slags with portland cement) have been examined. Isothermal calorimetry, chemical shrinkage and compressive strength measurements were made. The kinetics of hydration have been treated; apparent activation energies determined for a slag cement were ~49 KJ/mole compared with ~44 KJ/mole for the portland cement used in the blends.  相似文献   

11.
Properties and hydration of blended cements with steelmaking slag   总被引:1,自引:0,他引:1  
The present research study investigates the properties and hydration of blended cements with steelmaking slag, a by-product of the conversion process of iron to steel. For this purpose, a reference sample and three cements containing up to 45% w/w steel slag were tested. The steel slag fraction used was the “0-5 mm”, due to its high content in calcium silicate phases. Initial and final setting time, standard consistency, flow of normal mortar, autoclave expansion and compressive strength at 2, 7, 28 and 90 days were measured. The hydrated products were identified by X-ray diffraction while the non-evaporable water was determined by TGA. The microstructure of the hardened cement pastes and their morphological characteristics were examined by scanning electron microscopy. It is concluded that slag can be used in the production of composite cements of the strength classes 42.5 and 32.5 of EN 197-1. In addition, the slag cements present satisfactory physical properties. The steel slag slows down the hydration of the blended cements, due to the morphology of contained C2S and its low content in calcium silicates.  相似文献   

12.
A research program was undertaken to improve concrete's resistance against sulphuric acid attack. Six concretes were investigated, four using calcareous limestone aggregates and two using silicious aggregates. Cements used in these concretes included a portland cement, a binary cement containing ground granulated blast furnace slag, and two ternary cements containing slag and silica fume or fly ash and silica fume. All the concretes had the same water/cement ratio of 0.4, with compressive strengths in the range of 45 MPa and 58 MPa at the age of 28 days. In the experiment, concrete cylinders were immersed in 1% sulphuric acid solution and they were periodically examined for appearance, measured for mass change and tested in compression up to 168 days. The concrete using limestone aggregates and the ternary cement containing silica fume and fly ash performed the best.  相似文献   

13.
Physico-chemical properties and mechanical behaviour of ternary cements made by Portland cement, fly ash and limestone are studied. The mixtures at various compositions of clinker, gypsum fly ash and limestone are intimately ground and compared to other compositions without fly ash. Blended fly ash cements are also studied. The results show that fly ash acts as grinding agent by reducing the required time to obtain the same percentage of particles retained on a 80-μm sieve as the standard cement. Fly ash cements lead to an important extension of setting time than limestone cements. The replacement of clinker by limestone gives better mechanical strengths than the mixtures containing fly ash at early days; after 28 days, the cements prepared by incorporation of fly ash gain an important strength. From mechanical point of view, an optima dosage was obtained at 77% clinker, 2% gypsum, 7.5% fly ash and 13% limestone composition.  相似文献   

14.
The effect of initial water-curing period on the strength properties of concretes was investigated. Three types of cement, one ordinary Portland cement (OPC) and two natural pozzolanic cements (blended and trass cements), were used in the concrete mixtures. Six different curing regimes were applied to the specimens, the first of which was continuous water storing, and the second continuous air storing. In the remaining four regimes, the specimens were stored under varying initial water-curing periods of 3, 7, 14, and 28 days, respectively. The compressive strength tests were carried out on the cubic specimens at the ages of 7, 14, 28, 90, and 180 days. The variation of compressive strength with time was evaluated by using a semilogarithmic function and the strength-gaining rates were calculated by using this equation for different curing conditions. It was found that poor curing conditions are more adversely effective on the strength of concretes made by pozzolanic cements than that of OPC, and it is necessary to apply water curing to the former concretes at least for the initial 7 days to expose the pozzolanic activity. However, when the pozzolanic cement concretes have sufficient initial curing, they can reach the strength of OPC concretes in reasonable periods of time.  相似文献   

15.
This paper deals with the effect of intergrinding different percentages of a naphthalene-based superplasticizer with Portland cement clinker and gypsum on the fineness of the product, and on the water requirement and the compressive strength of the mortars made with the superplasticized cement. The properties of the fresh and hardened concrete made with the superplasticized cements were also investigated. The results showed that the intergrinding of a given amount of a naphthalene-based superplasticizer with Portland clinker and gypsum reduced the grinding time required for obtaining the same Blaine fineness as that of the control Portland cement without the superplasticizer. The water requirement of the mortars made with the superplasticized cements was similar to that of the mortars made with the control Portland cements when the same amount of the superplasticizer was added at the mortar mixer; for a given grinding time and a Blaine fineness of 4500 cm2/g, the mortars made with the superplasticized cement had higher compressive strength than those made with the control Portland cement. For a given grinding time or Blaine fineness of cement ≥5000 cm2/g, the slump loss, air content stability, bleeding, autogenous temperature rise, setting times, and compressive strength of the concrete made with the superplasticized cements were generally comparable to those of the concrete made with the control Portland cements when the superplasticizer was added at the concrete mixer.  相似文献   

16.
The potential of calcium aluminosilicate (CAS) glasses as supplementary cementitious materials is studied in terms of the development of compressive strength for mortars containing a mixture of portland cement, CAS glass, and limestone. In addition, the impact of internal and external alkali activation of the cementitious systems on the mortar performances is investigated. Internal alkali activation is obtained by adding alkali oxides to the CAS glass system, whereas external alkali activation is realized by hydration of the blended cements containing alkali‐free CAS glasses using alkaline solutions. For the internally alkali‐activated systems and the alkali‐free mortars, higher strengths are achieved in comparison to the reference mortar prepared from plain ordinary portland cement. In contrast, the externally alkali‐activated mortars exhibit lower compressive strengths, implying the importance of both the immediate availability of alkali ions in the cementitious system and the increased dissolution rate of the glass particles caused by the network depolymerization. The glasses are also studied by thermal analysis and the results are used to calculate the theoretical CO2 emissions. The lowest embodied CO2 emission is estimated for the blends containing alkali‐activated CAS glasses.  相似文献   

17.
It is one of important measures for the sustainable development of cement industry to utilize industrial wastes. High-strength composite portland cement with a large amount of granulated blast furnace slag (GBFS), fly ash and limestone was prepared by separate grinding method, optimizing gypsum and using activators. The total amounts of blending materials are between 45% and 65% and the strength grades of cements reach 525 or even 625 according to Chinese national standard for composite portland cement. Besides setting time and strength, the hydration heat, drying shrinkage and sulfate resistance were also determined.  相似文献   

18.
《Ceramics International》2023,49(10):15003-15014
The conventional Polymethyl methacrylate (PMMA) bone cement is not biodegradable and not bioactive to bond with the native bone and causes tissue necrosis resulting from its high exothermic polymerization. Hence, biodegradable bioactive bone cements with suitable setting time and mechanical properties should be introduced. In this study, novel bioactive bone cements containing Calcium Sulfate Hemihydrate (CSH), Bioactive Glass (BG), and Tricalcium Silicate (TSC) were developed. Firstly, CSH and BG binary system was optimized based on preliminary setting and mechanical tests. Secondly, the composite bioactive bone cements were obtained by adding different quantities of TCS to the optimized CS-BG (1.3:1 wt % ratio) system. All groups exhibited desirable handling properties, an initial setting time of lower than 15 min, injectability of greater than 85%, and controlled degradability. Moreover, they demonstrated initial compressive strength values of higher than 12 MPa, superior to trabecular bone. After 28 days of hydration, the compressive strength of the cement containing 30% TCS reached 51.04 MPa. Furthermore, the present bone cements showed favorable bioactivity and bone-bonding ability as a result of calcium carbonate and hydroxyapatite (HA) formation. Furthermore, this novel bone cement exhibited appropriate biocompatibility and mesenchymal stem cell attachment, suggesting its potential for clinical applications.  相似文献   

19.
Early hydration of portland cement with crystalline mineral additions   总被引:1,自引:0,他引:1  
This research presents the effects of finely divided crystalline mineral additions (quartz and limestone), commonly known as filler, on the early hydration of portland cements with very different mineralogical composition. The used techniques to study the early hydration of blended cements were conduction calorimeter, hydraulicity (Fratini's test), non-evaporable water and X-ray diffraction. Results showed that the stimulation and the dilution effects increase when the percentage of crystalline mineral additions used is increased. Depending on the replacement proportion, the mineralogical cement composition and the type of crystalline addition, at 2 days, the prevalence of the dilution effect or the stimulation effect shows that crystalline mineral additions could act as sites of heat dissipation or heat stimulation, respectively.  相似文献   

20.
Electrical properties of hydrating portland cements (PC) and portland cements containing silica fume were studied from 5 min to 90 days. Cement pastes with water to solids ratios ( w/s ) of 0.30, 0.35, and 0.40, as well as silica fume to portland cement ratios ( s/c ) of 0.05, 0.10, and 0.20, were made and impedance was measured within the frequencies of 13 MHz to 5 Hz. The impedance spectra exhibit electrode arcs at low frequencies and bulk material arcs at high frequencies. The bulk resistance of the paste increases with increasing silica fume content and/or decreasing water content. The conductivity of pore fluid from PC pastes increases rapidly with time during the early stages and then remains constant, while that of the silica fume pastes increases then decreases sharply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号