首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The special exact solutions of nonlinearly dispersive Boussinesq equations (called B(m,n) equations), uttuxxa(un)xx+b(um)xxxx=0, is investigated by using four direct ansatze. As a result, abundant new compactons: solitons with the absence of infinite wings, solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions of these two equations are obtained. The variant is extended to include linear dispersion to support compactons and solitary patterns in the linearly dispersive Boussinesq equations with m=1. Moreover, another new compacton solution of the special case, B(2,2) equation, is also found.  相似文献   

2.
Recently we have obtained compacton solutions and solitary pattern solutions of the modified nonlinearly dispersive KdV equations (simply called mK(m,n,k) equations). In this paper the mK(m,n,k) equations are investigated again. By using some transformations we give their some Jacobi elliptic function solutions. When the modulus μ→1 or 0, some of the obtained Jacobi elliptic function solutions degenerate as solitary wave solution.  相似文献   

3.
The authors consider the mth-order neutral difference equation Dm(y(n) + p(n)y(nk) + q(n)f(y(σ(n))) = e(n), where m ≥ 1, {p(n)}, {q(n)}, {e(n)}, and {a1(n)}, {a2(n)}, …, {am−1(n)} are real sequences, ai(n) > 0 for i = 1,2,…, m−1, am(n) ≡ 1, D0z(n) = y(n)+p(n)y(nk), Diz(n) = ai(n)ΔDi−1z(n) for i = 1,2, …, m, k is a positive integer, {σ(n)} → ∞ is a sequence of positive integers, and RR is continuous with u f(u) > 0 for u ≠ 0. In the case where {q(n)} is allowed to oscillate, they obtain sufficient conditions for all bounded nonoscillatory solutions to converge to zero, and if {q(n)} is a nonnegative sequence, they establish sufficient conditions for all nonoscillatory solutions to converge to zero. Examples illustrating the results are included throughout the paper.  相似文献   

4.
A double fixed-point theorem is applied to obtain the existence of at least two positive solutions for the boundary value problem, (−1)my(2m)(t) = f(y(t)), t ϵ [0, 1], y(2i)(0) = y(2i+1)(1) = 0, 0 ≤ im−1. It is later applied to obtain the existence of at least two positive solutions for the analogous discrete boundary value problem, (−1)mΔ2mu(k) = g(u(k)), k ϵ {0, …, N}, Δ2iu(0) = Δ2i+1u(N + 1) = 0, 0 ⩽ m − 1.  相似文献   

5.
The modified extended tanh-function method were applied to the general class of nonlinear diffusion-convection equations where the concentration-dependent diffusivity, D(u), was taken to be a constant while the concentration-dependent hydraulic conductivity, K(u) were taken to be in a power law. The obtained solutions include rational-type, triangular-type, singular-type, and solitary wave solutions. In fact, the profile of the obtained solitary wave solutions resemble the characteristics of a shock-wave like structure for an arbitrary m (where m>1 is the power of the nonlinear convection term).  相似文献   

6.
Given a directed, non-negatively weighted graph G=(V,E) and s,tV, we consider two problems. In the k simple shortest paths problem, we want to find the k simple paths from s to t with the k smallest weights. In the replacement paths problem, we want the shortest path from s to t that avoids e, for every edge e in the original shortest path from s to t. The best known algorithm for the k simple shortest paths problem has a running of O(k(mn+n2logn)). For the replacement paths problem the best known result is the trivial one running in time O(mn+n2logn).In this paper we present two simple algorithms for the replacement paths problem and the k simple shortest paths problem in weighted directed graphs (using a solution of the All Pairs Shortest Paths problem). The running time of our algorithm for the replacement paths problem is O(mn+n2loglogn). For the k simple shortest paths we will perform O(k) iterations of the second simple shortest path (each in O(mn+n2loglogn) running time) using a useful property of Roditty and Zwick [L. Roditty, U. Zwick, Replacement paths and k simple shortest paths in unweighted directed graphs, in: Proc. of International Conference on Automata, Languages and Programming (ICALP), 2005, pp. 249-260]. These running times immediately improve the best known results for both problems over sparse graphs.Moreover, we prove that both the replacement paths and the k simple shortest paths (for constant k) problems are not harder than APSP (All Pairs Shortest Paths) in weighted directed graphs.  相似文献   

7.
With the use of Adomian decomposition method, the prototypical, genuinely nonlinear K(m,n) equation, ut+(um)x+(un)xxx=0, which exhibits compactons  solitons with finite wavelength  is solved exactly. Two numerical illustrations, K(2,2) and K(3,3), are investigated to illustrate the pertinent features of the proposed scheme. The technique is presented in a general way so that it can be used in nonlinear dispersive equations.  相似文献   

8.
The diameter of a graph is an important factor for communication as it determines the maximum communication delay between any pair of processors in a network. Graham and Harary [N. Graham, F. Harary, Changing and unchanging the diameter of a hypercube, Discrete Applied Mathematics 37/38 (1992) 265-274] studied how the diameter of hypercubes can be affected by increasing and decreasing edges. They concerned whether the diameter is changed or remains unchanged when the edges are increased or decreased. In this paper, we modify three measures proposed in Graham and Harary (1992) to include the extent of the change of the diameter. Let D-k(G) is the least number of edges whose addition to G decreases the diameter by (at least) k, D+0(G) is the maximum number of edges whose deletion from G does not change the diameter, and D+k(G) is the least number of edges whose deletion from G increases the diameter by (at least) k. In this paper, we find the values of D-k(Cm), D-1(Tm,n), D-2(Tm,n), D+1(Tm,n), and a lower bound for D+0(Tm,n) where Cm be a cycle with m vertices, Tm,n be a torus of size m by n.  相似文献   

9.
Given a text T[1..u] over an alphabet of size σ, the full-text search problem consists in finding the occ occurrences of a given pattern P[1..m] in T. In indexed text searching we build an index on T to improve the search time, yet increasing the space requirement. The current trend in indexed text searching is that of compressed full-text self-indices, which replace the text with a more space-efficient representation of it, at the same time providing indexed access to the text. Thus, we can provide efficient access within compressed space. The Lempel-Ziv index (LZ-index) of Navarro is a compressed full-text self-index able to represent T using 4uH k (T)+o(ulog?σ) bits of space, where H k (T) denotes the k-th order empirical entropy of T, for any k=o(log? σ u). This space is about four times the compressed text size. The index can locate all the occ occurrences of a pattern P in T in O(m 3log?σ+(m+occ)log?u) worst-case time. Although this index has proven very competitive in practice, the O(m 3log?σ) term can be excessive for long patterns. Also, the factor 4 in its space complexity makes it larger than other state-of-the-art alternatives. In this paper we present stronger Lempel-Ziv based indices (LZ-indices), improving the overall performance of the original LZ-index. We achieve indices requiring (2+ε)uH k (T)+o(ulog?σ) bits of space, for any constant ε>0, which makes them the smallest existing LZ-indices. We simultaneously improve the search time to O(m 2+(m+occ)log?u), which makes our indices very competitive with state-of-the-art alternatives. Our indices support displaying any text substring of length ? in optimal O(?/log? σ u) time. In addition, we show how the space can be squeezed to (1+ε)uH k (T)+o(ulog?σ) to obtain a structure with O(m 2) average search time for m≥2log? σ u. Alternatively, the search time of LZ-indices can be improved to O((m+occ)log?u) with (3+ε)uH k (T)+o(ulog?σ) bits of space, which is much less than the space needed by other Lempel-Ziv-based indices achieving the same search time. Overall our indices stand out as a very attractive alternative for space-efficient indexed text searching.  相似文献   

10.
We address the problem of finding the K best integer solutions of a linear integer network flow problem. We design an O(f(n,m,L,U)+KmS(n,m,L)) time and O(K+m) memory space algorithm to determine the K best integer solutions, in a directed network with n nodes, m arcs, maximum absolute value cost L, and an upper bound U on arc capacities and node supplies. f(n,m,L,U) is the best time needed to solve the minimum cost flow problem in a directed network and S(n,m,L) is the best time to solve the single-source shortest path problem in a network with non-negative lengths. The introduced algorithm efficiently determines a “proper minimal cycle” by taking advantage of the relationship between the best solutions. This way, we improve the theoretical as well as practical memory space bounds of the well-known method due to Hamacher. Our computational experiments confirm this result.  相似文献   

11.
The second Liapunov method serves as a powerful tool for the investigation of the stability of the trivial solution of ordinary differential equations systems and discrete equations systems. In the presented paper, a Liapunov-type qualitative approach is used for the investigation of asymptotic behaviour of the solutions of systems of discrete equations. Conditions for the existence of continuum of solutions, the graphs of which remain within a given prescribed set, are formulated for the general systems of discrete equations Δu(k) = F(k, u(k)). An additional advantage of the presented approach consists of the fact that no assumption concerning the existence of the trivial solution (or the existence of an equilibrium point) of systems considered is assumed. Moreover, the asymptotic behaviour of solutions of some classes of linear difference systems is given by means of concrete asymptotic formulae. Several illustrative examples are considered, too.  相似文献   

12.
《国际计算机数学杂志》2012,89(8):1692-1708
Given (i) any k vertices u 1, u 2, …, u k (1≤k<n) in the n-cube Q n , where (u 1, u 2), (u 3, u 4), …, (u 2m?1, u 2m ) (m≤? k\2 ?) are edges of the same dimension, (ii) any k positive integers a 1, a 2, …, a k such that a 1, a 2, …, a 2m are odd and a 2m+1, …, a k are even, with a 1+a 2+···+a k =2 n , and (iii) k subsets W 1, W 2, …, W k of V(Q n ) with |W i |≤n?k and if a i =1, then u i ¬∈W i , for 1≤ik, we show that there exist k vertex-disjoint paths P (1), P (2), …, P (k) in Q n where P (i) contains a i vertices, its origin is u i , and its terminus is in V(Q n )/ W i , for 1≤ik. We also prove a similar result which extends two well-known results of Havel, [I. Havel On hamilton circuits and spanning trees of hypercubes, ?asopis pro P?stování Matematiky, 109 (1984), pp. 135–152.] and Nebeský, [L. Nebeský Embedding m-quasistars into n-cubes, Czech. Math. J. 38 (1988), pp. 705–712].  相似文献   

13.
In a graph G, a k-container Ck(u,v) is a set of k disjoint paths joining u and v. A k-container Ck(u,v) is k∗-container if every vertex of G is passed by some path in Ck(u,v). A graph G is k∗-connected if there exists a k∗-container between any two vertices. An m-regular graph G is super-connected if G is k∗-connected for any k with 1?k?m. In this paper, we prove that the recursive circulant graphs G(2m,4), proposed by Park and Chwa [Theoret. Comput. Sci. 244 (2000) 35-62], are super-connected if and only if m≠2.  相似文献   

14.
Variants of the two-dimensional Boussinesq equation with positive and negative exponents are studied. The sine-cosine ansatz is fruitfully used to carry out the analysis. Exact solutions of different physical structures: compactons, solitary patterns, solitons, and periodic solutions, are obtained. The quantitative change in the physical structure of the solutions is shown to depend mainly on the exponent of the wave function u(x, t) and on the ratio a/b of the derivatives of u(x, t).  相似文献   

15.
If a partial differential equation is reduced to an ordinary differential equation in the form u(ξ)=G(u,θ1,…,θm) under the traveling wave transformation, where θ1,…,θm are parameters, its solutions can be written as an integral form . Therefore, the key steps are to determine the parameters' scopes and to solve the corresponding integral. When G is related to a polynomial, a mathematical tool named complete discrimination system for polynomial is applied to this problem so that the parameter's scopes can be determined easily. The complete discrimination system for polynomial is a natural generalization of the discrimination △=b2−4ac of the second degree polynomial ax2+bx+c. For example, the complete discrimination system for the third degree polynomial F(w)=w3+d2w2+d1w+d0 is given by and . In the paper, we give some new applications of the complete discrimination system for polynomial, that is, we give the classifications of traveling wave solutions to some nonlinear differential equations through solving the corresponding integrals. In finally, as a result, we give a partial answer to a problem on Fan's expansion method.  相似文献   

16.
In this paper, we consider the following higher-order neutral delay difference equations with positive and negative coefficients: Δm(xn + cxnk) + pnxnrqnxnl = 0, nn0, where c ϵ R, m ⩾ 1, k ⩾ 1, r, l ⩾ 0 are integers, and {pn}n=n0 and {qn}n=n0 are sequences of nonnegative real numbers. We obtain the global results (with respect to c) which are some sufficient conditions for the existences of nonoscillatory solutions.  相似文献   

17.
In this paper, all cyclic codes with length psn, (n prime to p) over the ring R = Fp + uFp +?+ uk−1Fp are classified. It is first proved that Torj(C) is an ideal of , so that the structure of ideals over extension ring Suk(m,ω)=GR(uk,m)[ω]/〈ωps-1〉 is determined. Then, an isomorphism between R[X]/〈XN − 1〉 and a direct sum hISuk(mh,ω) can be obtained using discrete Fourier transform. The generator polynomial representation of the corresponding ideals over Fp + uFp +?+ uk−1Fp is calculated via the inverse isomorphism. Moreover, torsion codes, MS polynomial and inversion formula are described.  相似文献   

18.
With the use of some proper transformations and symbolic computation, we present a general and unified method for investigating the general modified nonlinear dispersive equations mK(m,n) in higher dimensions spaces. The work formally shows how to construct the general solutions and some special exact-solutions for mK(m,n) equations in higher dimensional spatial domains. The general solutions not only contain the solutions by Wazwaz [Math. Comput. Simulation 59 (2002) 519] but also contain many new compact and noncompact solutions.  相似文献   

19.
This paper focuses on a linear array ofnnodes withmultiple shared busesas a practically feasible model for parallel processing. Letkbe the number of shared buses. A nonoblivious scheme for mutually exclusive access tokshared buses is proposed. The effectiveness of the scheme is demonstrated by proposing an algorithm for solving a partial sort problem, which can be efficiently executed on the array according to the scheme. Thepartial sort problemwith parametermis the problem of sorting a subsetS′ of a given setS, whereS′ is the set of elements less than or equal to themth smallest element inS. Ifm= 1, then it is solved by an algorithm for finding the smallest element inS, and ifm=n, then it is solved by adapting normal sorting algorithm. The time complexity (9m/k) log2log2n+ 3.467[formula]+O(m/k+ (n/k)1/4) of the proposed algorithm matches a lower bound Ω ([formula]+m/k) with respect tonandk, ifmis small enough to satisfym=O([formula]/log logn).  相似文献   

20.
Improving bounds on link failure tolerance of the star graph   总被引:1,自引:0,他引:1  
Determination of the minimum number of faulty links, f(n,k), that make every n-k-dimensional sub-star graph Sn-k faulty in an n-dimensional star network Sn, has been the subject of several studies. Bounds on f(n,k) have already been derived, and it is known that f(n,1)=n+2. Here, we improve the bounds on f(n,k). Specifically, it is shown that f(n,k)?(k+1)F(n,k), where F(n,k) is the minimum number of faulty nodes that make every Sn-k faulty in Sn. The complexity of f(n,k) is shown to be O(n2k) which is an improvement over the previously known upper bound of O(n3); this result in a special case leads to f(n,2)=O(n2), settling a conjecture introduced in an earlier paper. A systematic method to derive the labels of the faulty links in case of f(n,1) is also introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号