共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of tool path planning is to maximize the efficiency against some given precision criteria. In practice, scallop height should be kept constant to avoid unnecessary cutting, while the tool path should be smooth enough to maintain a high feed rate. However, iso-scallop and smoothness often conflict with each other. Existing methods smooth iso-scallop paths one-by-one, which make the final tool path far from being globally optimal. This paper proposes a new framework for tool path optimization. It views a family of iso-level curves of a scalar function defined over the surface as tool path so that desired tool path can be generated by finding the function that minimizes certain energy functional and different objectives can be considered simultaneously. We use the framework to plan globally optimal tool path with respect to iso-scallop and smoothness. The energy functionals for planning iso-scallop, smoothness, and optimal tool path are respectively derived, and the path topology is studied too. Experimental results are given to show effectiveness of the proposed methods. 相似文献
2.
Constant scallop-height tool path generation for three-axis sculptured surface machining 总被引:5,自引:0,他引:5
This paper presents a new approach for the determination of efficient tool paths in the machining of sculptured surfaces using 3-axis ball-end milling. The objective is to keep the scallop height constant across the machined surface such that redundant tool paths are minimized. Unlike most previous studies on constant scallop-height machining, the present work determines the tool paths without resorting to the approximated 2D representations of the 3D cutting geometry. Two offset surfaces of the design surface, the scallop surface and the tool center surface, are employed to successively establish scallop curves on the scallop surface and cutter location tool paths for the design surface. The effectiveness of the present approach is demonstrated through the machining of a typical sculptured surface. The results indicate that constant scallop-height machining achieves the specified machining accuracy with fewer and shorter tool paths than the existing tool path generation approaches. 相似文献
3.
A machining potential field approach to tool path generation for multi-axis sculptured surface machining 总被引:7,自引:0,他引:7
This paper presents a machining potential field (MPF) method to generate tool paths for multi-axis sculptured surface machining. A machining potential field is constructed by considering both the part geometry and the cutter geometry to represent the machining-oriented information on the part surface for machining planning. The largest feasible machining strip width and the optimal cutting direction at a surface point can be found on the constructed machining potential field. The tool paths can be generated by following the optimal cutting direction. Compared to the traditional iso-parametric and iso-planar path generation methods, the generated MPF multi-axis tool paths can achieve better surface finish with shorter machining time. Feasible cutter sizes and cutter orientations can also be determined by using the MPF method. The developed techniques can be used to automate the multi-axis tool path generation and to improve the machining efficiency of sculptured surface machining. 相似文献
4.
A geometry-based investigation of the tool path generation for zigzag pocket machining 总被引:8,自引:0,他引:8
Martin Held 《The Visual computer》1991,7(5-6):296-308
5.
This paper presents a tool axis vector approach for machining sculptured surfaces. Such an approach is well suited for highly twisted, rolled, or bent surfaces. The tool paths are generated for a 5-axis milling machine. The proposed approach is based on tilt angle, cutting direction, and a vector normal to the cutting surface. Gouging is avoided by checking the interference between the cutting tool and the part surface. The algorithm also finds maximum path intervals that generate maximum admissible cusp height within the specified tolerance limits. Such an approach minimizes the tool path and machining time. The paper presents an example to illustrate the details of the algorithm.This research was accomplished by funding provided by the Korean Research Foundation under the Faculty Research Abroad Program and by the advice and support of the second author. 相似文献
6.
Traditionally, for the flat-end tool, due to the intertwined dependence relationship between its axis and reference point, most 5-axis tool-path generation algorithms take a decoupled two-stage strategy: first, the so-called cutter contact (CC) curves are placed on the part surface; then, for each CC curve, tool orientations are decided that will accommodate local and/or global constraints such as minimum local gouging and global collision avoidance. For the former stage, usually simplistic “offset” methods are adopted to determine the cutter contact curves, such as the iso-parametric or iso-plane method; whereas for the latter, a common practice is to assign fixed tilt and yaw angle to the tool axis regardless the local curvature information and, in the case of considering global interference, the tool orientation is decided solely based on avoiding global collision but ignoring important local machining efficiency issues. This independence between the placement of CC curves and the determination of tool orientations, as well as the rigid way in which the tilt and yaw angle get assigned, incurs many undesired problems, such as the abrupt change of tool orientations, the reduced efficiency in machining, the reduced finishing surface quality, the unnecessary dynamic loading on the machine, etc. In this paper, we present a 5-axis tool-path generation algorithm that aims at alleviating these problems and thus improving the machining efficiency and accuracy. In our algorithm, the CC curves are contour lines on the part surface that satisfy the iso-conic property — the surface normal vectors on each CC curve fall on a right small circle on the Gaussian sphere, and the tool orientations associated to a CC curve are determined by the principle of minimum tilt (also sometimes called lead) angle that seeks fastest cutting rate without local gouging. Together with an elaborate scheme for determining the step-over distance between adjacent CC curves that seeks maximum material removal, the presented algorithm offers some plausible advantages over most existing 5-axis tool-path generation algorithms, particularly in terms of reducing the angular velocity and acceleration of the rotary axes of the machine. The simulation experiments of the proposed algorithm and their comparison with a leading commercial CAM software toolbox are also provided that demonstrate the claimed advantages. 相似文献
7.
This paper presents a new efficient and robust tool-path generation method that employs a curve-based approach for clean-up machining. The clean-up machining discussed in this paper is pencil-cut and fillet-cut for a polyhedral model of the STL form with a ball-end mill. The pencil-cut and fillet-cut paths are obtained from the curve-based scanning tool paths on the xz, yz, and xy planes. The scanning tool path has exact sharp-concave points and bi-contact vectors, both of which are very useful to detect ‘pencil-points’, to trace the pencil-cut path, and to generate the fillet-cut path. In the paper, some illustrative examples are provided, and the characteristics of the proposed method are discussed. 相似文献
8.
9.
Optimal and collision free tool posture in five-axis machining through the tight integration of tool path generation and machine simulation 总被引:5,自引:0,他引:5
B. Lauwers Author Vitae P. Dejonghe Author VitaeAuthor Vitae 《Computer aided design》2003,35(5):421-432
The generation of collision free NC-programs for multi-axis milling operations is a critical task, which leads to multi-axis milling machines being exploited below their full capacities. Today, CAM systems, generating the tool path, do not take the multi-axis machine movements into account. They generate a multi-axis tool path, described by a sequence of tool postures (tool tip+tool orientation), which is then converted by a NC-postprocessor to a machine specific NC-program. As the postprocessing is normally done in batch mode, the NC-programmer does not know how the machine will move and the chance for having collisions between (moving) machine components is often very high. The execution of a machine test run or the application of a machine simulation system (NC-simulation) is the only solution to inform the NC-programmer about possible machine collisions during operation.This paper describes a multi-axis tool path generation algorithm where the tool orientation is optimised to avoid machine collisions and at the same time to maximise the material removal rate along the tool track. To perform efficient collision avoidance, the tool path generation module (traditional CAM), the postprocessing (axes transformation) and machine simulation has been integrated into one system. Cutting tests have been carried out to define the allowable tool orientation changes for optimisation and collision avoidance without disturbing the surface quality.The developed multi-axis tool path generation algorithm is applicable for the machining of several part surfaces within one operation. This, together with tool path generation functionality to adapt the tool orientation for both, maximal material removal and avoidance of collisions between (moving) machine components, are the innovative aspects of the presented research work. 相似文献
10.
Roshan M. D'Souza Author Vitae Carlo Sequin Author Vitae Author Vitae 《Computer aided design》2004,36(7):595-605
This paper describes an efficient method to find the lowest cost tool sequence for rough machining free-form pockets on a 3-axis milling machine. The free-form pocket is approximated to within a predefined tolerance of the desired surface using series of 2.5-D layers of varying thicknesses that can be efficiently removed with flat-end milling cutters. A graph-based method finds an optimal sequence of tools for rough machining the approximated pocket. The algorithm used here can be tuned to suit any available tool set and preferred cost models. The tool sequence that is obtained is near optimal, and may take into account tool wear, as well as various overhead costs of the machine shop. 相似文献
11.
One of the main issues of the reverse engineering (RE) is the duplication of an existing physical part whose geometric information is partially or completely unavailable in measured form. In some industrial applications, physical parts are duplicated using three-axis CNC machines and ball-end mills. Many researches studied the problem of direct tool path generation from measured data point. However, up to the present, it appears that there is no reported study on interference detection in paths generated directly from measured data points. Interference detection is a curial problem in direct tool path generation from measured data points. This paper discusses the problem of local and global interference detection for three-axis machining in RE and proposes algorithms for local and global interference detection. With these algorithms, the measured data points captured from a physical part are analyzed and classified according to the shapes of the part. The method has been tested with several industrial parts, and it is shown to be robust and efficient especially for the part with free-form surfaces. 相似文献
12.
Optimization of tool path planning using metaheuristic algorithms such as ant colony systems (ACS) and particle swarm optimization (PSO) provides a feasible approach to reduce geometrical machining errors in 5-axis flank machining of ruled surfaces. The optimal solutions of these algorithms exhibit an unsatisfactory quality in a high-dimensional search space. In this study, various algorithms derived from the electromagnetism-like mechanism (EM) were applied. The test results of representative surfaces showed that all EM-based methods yield more effective optimal solutions than does PSO, despite a longer search time. A new EM-MSS (electromagnetism-like mechanism with move solution screening) algorithm produces the most favorable results by ensuring the continuous improvement of new searches. Incorporating an SPSA (simultaneous perturbation stochastic approximation) technique further improves the search results with effective initial solutions. This work enhances the practical values of tool path planning by providing a satisfactory machining quality. 相似文献
13.
14.
M. Salman A. Mansor Author Vitae Author Vitae O.O. Owodunni Author Vitae 《Computer aided design》2006,38(3):194-209
This paper solves the problem of uncut areas, which can arise when 2½D pockets are machined with radial widths of cut greater than half the cutter diameter. Using the Voronoi diagram approach, three types of uncut areas are defined i.e., corner, centre and neck uncut regions. The corner uncut area is further subdivided into five different types, the centre uncut area into four and the neck uncut area into two. Techniques for detecting each type as well as algorithms for generating the tool paths for removing them are developed based on a singularity-free Voronoi diagram approach. These efficient and robust algorithms ensure that no uncut material is left behind even for complex-shaped pockets containing islands. The proposed algorithms even permit the radial width of cut to be increased to its limiting value of tool diameter. Three examples are included to illustrate the procedures for detection and removal of the different types of uncut areas. 相似文献
15.
Imre Horváth Joris SM Vergeest Johan J Broek Zoltán Rusák Bram de SmitAuthor vitae 《Computer aided design》1998,30(14):1097-1110
In several application fields, large sized, free-form objects of various soft materials are widely used. Available layered prototyping technologies cannot be applied for fabrication of these kinds of objects due to size limitations. The authors have developed a novel approach of layered manufacturing that is the most appropriate for physical concept modeling. This paper presents the algorithms for geometrically-based modeling of the profile curve of the flexible blade tool. It also describes the algorithm for direct slicing of the CAD model. The second part of the paper deals with the algorithms for slicing, tool positioning and tool path calculation. On the front surfaces of the layers G2, quasi G1 continuity can be implemented at the transition from one layer to another. In the circumferential direction G0 continuity exists. 相似文献
16.
Presented in this paper is a tool path generation method for multi-axis machining of free-form surfaces using Bézier curves and surfaces. The tool path generation includes two core steps. First is the forward-step function that determines the maximum distance, called forward step, between two cutter contact (CC) points with a given tolerance. The second component is the side step function which determines the maximum distance, called side step, between two adjacent tool paths with a given scallop height. Using the Bézier curves and surfaces, we generate cutter contact (CC) points for free-form surfaces and cutter location (CL) data files for post processing. Several parts are machined using a multi-axis milling machine. As part of the validation process, the tool paths generated from Bézier curves and surfaces are analyzed to compare the machined part and the desired part. 相似文献
17.
A corner-looping based tool path for pocket milling 总被引:1,自引:0,他引:1
H.S. Choy Author Vitae 《Computer aided design》2003,35(2):155-166
In milling around corners, cutting resistance rises momentarily due to an increase of cutter contact length. NC tool path generation in dealing with sharp corners thus requires special consideration. This paper describes an improved NC tool path pattern for pocket milling. The basic pattern of the improved tool path is a conventional contour-parallel tool path. Bow-like tool path segments are appended to the basic tool path at the corner positions. When reaching a corner, the cutter loops around the appended tool path segments so that corner material is removed progressively in several passes. By using the corner-looping based tool path, cutter contact length can be controlled by adjusting the number of appended tool path loops. The procedures of creating the improved tool path for different corner shapes are explained. The proposed tool path generation was implemented as an add-on user function in a CAD/CAM system. Cutting tests were conducted to demonstrate and verify the significance of the proposed method. 相似文献
18.
As an innovative and cost-effective method for carrying out multiple-axis CNC machining,
-axis CNC machining technique adds an automatic indexing/rotary table with two additional discrete rotations to a regular 3-axis CNC machine, to improve its ability and efficiency for machining complex sculptured parts. In this work, a new tool path generation method to automatically subdivide a complex sculptured surface into a number of easy-to-machine surface patches; identify the favorable machining set-up/orientation for each patch; and generate effective 3-axis CNC tool paths for each patch is introduced. The method and its advantages are illustrated using an example of sculptured surface machining. The work contributes to automated multiple-axis CNC tool path generation for sculptured part machining and forms a foundation for further research. 相似文献
19.
Iso-planar piecewise linear NC tool path generation from discrete measured data points 总被引:7,自引:0,他引:7
This article presents a method of generating iso-planar piecewise linear NC tool paths for three-axis surface machining using ball-end milling directly from discrete measured data points. Unlike the existing tool path generation methods for discrete points, both the machining error and the machined surface finish are explicitly considered and evaluated in the present work. The primary direction of the generated iso-planar tool paths is derived from the projected boundary of the discrete points. A projected cutter location net (CL-net) is then created, which groups the data points according to the intended machining error and surface finish requirements. The machining error of an individual data point is evaluated within its bounding CL-net cell from the adjacent tool swept surfaces of the ball-end mill. The positions of the CL-net nodes can thus be optimized and established sequentially by minimizing the machining error of each CL-net cell. Since the linear edges of adjacent CL-net cells are in general not perfectly aligned, weighted averages of the associated CL-net nodes are employed as the CL points for machining. As a final step, the redundant segments on the CL paths are trimmed to reduce machining time. The validity of the tool path generation method has been examined by using both simulated and experimentally measured data points. 相似文献
20.
Recent development in CNC machining of freeform surfaces: A state-of-the-art review 总被引:14,自引:0,他引:14
Freeform surfaces, also called sculptured surfaces, have been widely used in various engineering applications. Freeform surfaces are primarily manufactured by CNC machining, especially 5-axis CNC machining. Various methodologies and computer tools have been developed in the past to improve efficiency and quality of freeform surface machining. This paper aims at providing a state-of-the-art review on recent research development in CNC machining of freeform surfaces. This review primarily focuses on three aspects in freeform surface machining: tool path generation, tool orientation identification, and tool geometry selection. For each aspect, first concepts, requirements and fundamental research methods are briefly introduced. The major research methodologies developed in the past decade in each aspect are presented with details. Problems and future research directions are also discussed. 相似文献