首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Leti-Lir has studied II–VI compounds for infrared (IR) detection for more than 20 years. The need to reduce the production cost of IR focal plane arrays (FPAs) sparked the development of heteroepitaxy on large-area substrates. Germanium has been chosen as the heterosubstrate for the third generation of IR detectors. First, we report on the progress achieved in HgCdTe growth on 3-in. and 4-in. (211)B CdTe/Ge. Then, we discuss the choice of a new machine for larger size and better homogeneity. Finally, we present the latest results on third-generation IR multicolor and megapixel devices. First-time results regarding a middle wavelength infrared (MWIR) dual-band FPA, with a reduced pitch of 25 μm, and a MWIR 1,280×1,024 FPA will be shown. Both detectors are based on molecular beam epitaxy (MBE)-grown HgCdTe on Ge. The results shown validate the choice of Ge as the substrate for third-generation detectors.  相似文献   

2.
In this paper, we present all the successive steps for realizing dual-band infrared detectors operating in the mid-wavelength infrared (MWIR) band. High crystalline quality HgCdTe multilayer stacks have been grown by molecular beam epitaxy (MBE) on CdZnTe and CdTe/Ge substrates. Material characterization in the light of high-resolution x-ray diffraction (HRXRD) results and dislocation density measurements are exposed in detail. These characterizations show some striking differences between structures grown on the two kinds of substrates. Device processing and readout circuit for 128×128 focal-plane array (FPA) fabrication are described. The electro-optical characteristics of the devices show that devices grown on Ge match those grown on CdZnTe substrates in terms of responsivity, noise measurements, and operability.  相似文献   

3.
Without any additional preparation, Cd1−yZnyTe (211)B (y∼3.5%) wafers were cleaned by exposure to an electron cyclotron resonance (ECR) Ar/H2 plasma and used as substrates for HgCdTe molecular beam epitaxy. Auger electron spectra were taken from as-received wafers, conventionally prepared wafers (bromine: methanol etching, followed by heating to 330–340°C), and wafers prepared under a variety of ECR process conditions. Surfaces of as-received wafers contained ∼1.5 monolayers of contaminants (oxygen, carbon, and chlorine). Conventionally prepared wafers had ∼1/4 monolayer of carbon contamination, as well as excess tellurium and/or excess zinc depending on the heating process used. Auger spectra from plasma-treated CdZnTe wafers showed surfaces free from contamination, with the expected stoichiometry. Stoichiometry and surface cleanliness were insensitive to the duration of plasma exposure (2–20 s) and to changes in radio frequency input power (20–100 W). Reflection high energy electron diffraction patterns were streaked indicating microscopically smooth and ordered surfaces. The smoothness of plasma-etched CdZnTe wafers was further confirmed ex situ using interferometric microscopy. Surface roughness values of ∼0.4 nm were measured. Characteristics of HgCdTe epilayers deposited on wafers prepared with plasma and conventional etching were found to be comparable. For these epilayers, etch pit densities on the order of 105 cm−2 have been achieved. ECR Ar/H2 plasma cleaning is now utilized at Night Vision and Electronic Sensors Directorate as the baseline CdZnTe surface preparation technique.  相似文献   

4.
HgCdTe MBE technology is becoming a mature growth technology for flexible manufacturing of short-wave, medium-wave, long-wave, and very long-wave infrared focal plane arrays. The main reason that this technology is getting more mature for device applications is the progress made in controlling the dopants (both n-type and p-type in-situ) and the success in lowering the defect density to less than 2 x 105/cm2 in the base layer. In this paper, we will discuss the unique approach that we have developed for growing As-doped HgCdTe alloys with cadmium arsenide compound. Material properties including composition, crystallinity, dopant activation, minority carrier lifetime, and morphology are also discussed. In addition, we have fabricated several infrared focal plane arrays using device quality double layers and the device results are approaching that of the state-of-the-art liquid phase epitaxy technology.  相似文献   

5.
We study the adsorption of Hg on CdTe(211)B using an 88-wavelength spectroscopic ellipsometer mounted on a commercial, molecular beam epitaxy (MBE) chamber. A detailed analysis of the pseudo-dielectric function shows that Hg is present at the surface both in chemisorbed and physisorbed form. Effective medium models for a mixture of chemisorbed and physisorbed Hg on the microscopically rough CdTe surface could not fit our data. However, a proposed model in which a partial layer of physisorbed Hg sits on top of a partial layer of chemisorbed Hg fits the measured pseudo-dielectric function well and yields precise values for the thicknesses of the chemisorbed and the physisorbed Hg layers. These values change in the expected manner as a function of Hg flux, temperature, and Te coverage. An analysis of the uncertainty in the measured thicknesses is carried out in detail, and a study of the limitations of the ellipsometer used for this study is presented. The effects of these limitations on the precision and accuracy of in-situ data are enumerated.  相似文献   

6.
CdZnTe wafers were inserted into a multi-chamber processing facility without prior preparation, cleaned by exposure to an electron cyclotron resonance Ar/H2 plasma, and used as substrates for molecular beam epitaxy of HgCdTe. Changes induced in the wafer near-surface region during the cleaning step were monitored using in situ spectroscopic ellipsometry. Ellipsometric data were subsequently modeled to provide the time evolution of the thickness of a native overlayer. Auger electron spectra were consistent with surfaces free of residual contamination and which had the stoichiometry of the underlying bulk. Surface roughness values of 0.4 nm were obtained ex situ using interferometric microscopy. Electron diffraction patterns of plasma prepared wafers heated to 185°C (the temperature required for HgCdTe molecular beam epitaxy) were streaked. Structural and electrical characteristics of epilayers grown on these substrates were found to be comparable to those deposited on wafers prepared using a conventional wet chemical process. This demonstrates an important step in an all-vacuum approach to HgCdTe detector fabrication.  相似文献   

7.
A Hg1-xCdxTe growth method is presented for molecular beam epitaxy, which precisely controls growth conditions to routinely obtain device quality epilayers at a certain specific composition. This method corrects the fluctuation in composition x for run-to-run growth by feedback from the x value for the former growth to the fluxes from CdTe and Te cells. We achieved standard deviation Δx/ x of 3.3% for 13 samples grown consecutively. A substrate temperature drop was found during growth, which considerably degrades the crystal quality of epilayers. In this method, this drop is greatly diminished by covering the holder surface with a heavily doped Si wafer. Finally, etch pit density of 4 x 104 cm-2 and full width at half-maximum of 12 arc-s for the x-ray double-crystal rocking curve were obtained as the best values.  相似文献   

8.
High-quality, single-crystal epitaxial films of CdTe(112)B and HgCdTe(112)B have been grown directly on Si(112) substrates without the need for GaAs interfacial layers. The CdTe and HgCdTe films have been characterized with optical microscopy, x-ray diffraction, wet chemical defect etching, and secondary ion mass spectrometry. HgCdTe/Si infrared detectors have also been fabricated and tested. The CdTe(112)B films are highly specular, twin-free, and have x-ray rocking curves as narrow as 72 arc-sec and near-surface etch pit density (EPD) of 2 × 106 cm−2 for 8 μm thick films. HgCdTe(112)B films deposited on Si substrates have x-ray rocking curve FWHM as low as 76 arc-sec and EPD of 3-22 × 106 cm−2. These MBE-grown epitaxial structures have been used to fabricate the first high-performance HgCdTe IR detectors grown directly on Si without use of an intermediate GaAs buffer layer. HgCdTe/Si infrared detectors have been fabricated with 40% quantum efficiency and R0A = 1.64 × 104 Ωm2 (0 FOV) for devices with 7.8 μm cutoff wavelength at 78Kto demonstrate the capability of MBE for growth of large-area HgCdTe arrays on Si.  相似文献   

9.
We have carried out a study and identified that MBE HgCdTe growth-induced void defects are detrimental to long wavelength infrared photodiode performance. These defects were induced during nucleation by having surface growth conditions deficient in Hg. Precise control and reproducibility of the CdZnTe surface temperature and beam fluxes are required to minimize such defects. Device quality material with void defect concentration values in the low 102 cm2 range were demonstrated.  相似文献   

10.
Growth of Hg1−xCdxTe by molecular beam epitaxy (MBE) has been under development since the early 1980s at Rockwell Scientific Company (RSC), formerly the Rockwell Science Center; and we have shown that high-performance and highly reproducible MBE HgCdTe double heterostructure planar p-on-n devices can be produced with high throughput for various single- and multiplecolor infrared applications. In this paper, we present data on Hg1−xCdxTe epitaxial layers grown in a ten-inch production MBE system. For growth of HgCdTe, standard effusion cells containing CdTe and Te were used, in addition to a Hg source. The system is equipped with reflection high energy electron diffraction (RHEED) and spectral ellipsometry in addition to other fully automated electrical and optical monitoring systems. The HgCdTe heterostructures grown in our large ten-inch Riber 49 MBE system have outstanding structural characteristics with etch-pit densities (EPDs) in the low 104 cm−2 range, Hall carrier concentration in low 1014 cm−3, and void density <1000 cm2. The epilayers were grown on near lattice-matched (211)B Cd0.96Zn0.04Te substrates. High-performance mid wavelength infrared (MWIR) devices were fabricated with R0A values of 7.2×106 Ω-cm2 at 110 K, and the quantum efficiency without an antireflection coating was 71.5% for cutoff wavelength of 5.21 μm at 37 K. For short wavelength infrared (SWIR) devices, an R0A value of 9.4×105 Ω-cm2 at 200 K was obtained and quantum efficiency without an antireflection coating was 64% for cutoff wavelength of 2.61 μm at 37 K. These R0A values are comparable to our trend line values in this temperature range.  相似文献   

11.
Short wave infrared (SWIR) devices have been fabricated using Rockwell’s double layer planar heterostructure (DLPH) architecture with arsenic-ion implanted junctions. Molecular beam epitaxially grown HgCdTe/CdZnTe multilayer structures allowed the thin, tailored device geometries (typical active layer thickness was ∼3.5 μm and cap layer thickness was ∼0.4 μm) to be grown. A planar-mesa geometry that preserved the passivation advantages of the DLPH structure with enhanced optical collection improved the performance. Test detectors showed Band 7 detectors performing near the radiative limit (∼3-5X below theory). Band 5 detector performance was ∼4-50X lower than radiative limited performance, apparently due to Shockley-Hall-Read recombination. We have fabricated SWIR HgCdTe 256 × 12 × 2 arrays of 45 um × 45 μm detector on 45 μm × 60 μm centers and with cutoff wavelength which allows coverage of the Landsat Band 5 (1.5−1.75 μm) and Landsat Band 7 (2.08−2.35 μm) spectral regions. The hybridizable arrays have four subarrays, each having a different detector architecture. One of the Band 7 hybrids has demonstrated performance approaching the radiative theoretical limit for temperatures from 250 to 295K, consistent with test results. D* performance at 250K of the best subarray was high, with an operability of ∼99% at 1012 cm Hz1/2/W at a few mV bias. We have observed 1/f noise below 8E-17 AHz 1/2 at 1 Hz. Also for Band 7 test structures, Ge thin film diffractive microlenses fabricated directly on the back side of the CdZnTe substrate showed the ability to increase the effective collection area of small (nominally <20 μm μm) planar-mesa diodes to the microlens size of 48 urn. Using microlenses allows array performance to exceed 1-D theory up to a factor of 5.  相似文献   

12.
The heteroepitaxial growth of HgCdTe on large-area Si substrates is an enabling technology leading to the production of low-cost, large-format infrared focal plane arrays (FPAs). This approach will allow HgCdTe FPA technology to be scaled beyond the limitations of bulk CdZnTe substrates. We have already achieved excellent mid-wavelength infrared (MWIR) and short wavelength infrared (SWIR) detector and FPA results using HgCdTe grown on 4-in. Si substrates using molecular beam epitaxy (MBE), and this work was focused on extending these results into the long wavelength infrared (LWIR) spectral regime. A series of nine p-on-n LWIR HgCdTe double-layer heterojunction (DLHJ) detector structures were grown on 4-in. Si substrates. The HgCdTe composition uniformity was very good over the entire 4-in. wafer with a typical maximum nonuniformity of 2.2% at the very edge of the wafer; run-to-run composition reproducibility, realized with real-time feedback control using spectroscopic ellipsometry, was also very good. Both secondary ion mass spectrometry (SIMS) and Hall-effect measurements showed well-behaved doping and majority carrier properties, respectively. Preliminary detector results were promising for this initial work and good broad-band spectral response was demonstrated; 61% quantum efficiency was measured, which is very good compared to a maximum allowed value of 70% for a non-antireflection-coated Si surface. The R0A products for HgCdTe/Si detectors in the 9.6-μm and 12-μm cutoff range were at least one order of magnitude below typical results for detectors fabricated on bulk CdZnTe substrates. This lower performance was attributed to an elevated dislocation density, which is in the mid-106 cm−2 range. The dislocation density in HgCdTe/Si needs to be reduced to <106 cm−2 to make high-performance LWIR detectors, and multiple approaches are being tried across the infrared community to achieve this result because the technological payoff is significant.  相似文献   

13.
利用全固态分子束外延(MBE)方法在Ge(100)衬底上异质外延GaAs薄膜,并通过高能电子衍射(RHEED)、高分辨X射线衍射(XRD),原子力显微镜等手段研究了不同生长参数对外延层的影响.RHEED显示在较高的生长温度或较低的生长速率下,低温GaAs成核层呈现层状生长模式.同时降低生长温度和生长速率会使GaAs薄膜的XRD摇摆曲线半高宽(FWHM)减小,并降低外延层表面的粗糙度,这主要是由于衬底和外延薄膜之间的晶格失配度减小的结果.  相似文献   

14.
The nucleation and growth of GaAs films on offcut (001) Ge wafers by solid source molecular beam epitaxy (MBE) is investigated, with the objective of establishing nucleation conditions which reproducibly yield GaAs films which are free of antiphase domains (APDs) and which have suppressed Ge outdiffusion into the GaAs layer. The nucleation process is monitored by in-situ reflection high energy electron diffraction and Auger electron spectroscopy. Several nucleation variables are studied, including the state of the initial Ge surface (single-domain 2×1 or mixed-domain 2×1:1×2), the initial prelayer (As, Ga, or mixed), and the initial GaAs growth temperature (350 or 500°C). Conditions are identified which simultaneously produce APD-free GaAs layers several microns in thickness on Ge wafers with undetectable Ge outdiffusion and with surface roughness equivalent to that of GaAs/GaAs homoepitaxy. APD-free material is obtained using either As or Ga nucleation layers, with the GaAs domain dependent upon the initial exposure chemical species. Key growth steps for APD-free GaAs/Ge growth by solid source MBE include an epitaxial Ge buffer deposited in the MBE chamber to bury carbon contamination from the underlying Ge wafer, an anneal of the Ge buffer at 640°C to generate a predominantly double atomic-height stepped surface, and nucleation of GaAs growth by a ten monolayer migration enhanced epitaxy step initiated with either pure As or Ga. We identify this last step as being responsible for blocking Ge outdiffusion to below 1015 cm−3 within 0.5 microns of the GaAs/Ge interface.  相似文献   

15.
We report here molecular beam epitaxy (MBE) mercury cadmium telluride (HgCdTe) layers grown on polished and repolished substrates that showed state-of-the-art optical, structural, and electrical characteristics. Many polishing machines currently available do not take into account the soft semiconductor materials, CdZnTe (CZT) being one. Therefore, a polishing jig was custom designed and engineered to take in account certain physical parameters (pressure, substrate rotational frequency, drip rate of solution onto the polishing pad, and polishing pad rotational velocity). The control over these parameters increased the quality, uniformity, and the reproducibility of each polish. EPIR also investigated several bromine containing solutions used for polishing CZT. The concentration of bromine, as well as the mechanical parameters, was varied in order to determine the optimal conditions for polishing CZT.  相似文献   

16.
CdTe layers have been grown by molecular beam epitaxy on 3 inch nominal Si(211) under various conditions to study the effect of growth parameters on the structural quality. The microstructure of several samples was investigated by high resolution transmission electron microscopy (HRTEM). The orientation of the CdTe layers was affected strongly by the ZnTe buffer deposition temperature. Both single domain CdTe(133)B and CdTe(211)B were obtained by selective growth of ZnTe buffer layers at different temperatures. We demonstrated that thin ZnTe buffer layers (<2 nm) are sufficient to maintain the (211) orientation. CdTe deposited at ∼300°C grows with its normal lattice parameter from the onset of growth, demonstrating the effective strain accommodation of the buffer layer. The low tilt angle (<1°) between CdTe[211] and Si[211] indicates that high miscut Si(211) substrates are unnecessary. From low temperature photoluminescence, it is shown that Cd-substituted Li is the main residual impurity in the CdTe layer. In addition, deep emission bands are attributed to the presence of AsTe and AgCd acceptors. There is no evidence that copper plays a role in the impurity contamination of the samples.  相似文献   

17.
The application of spectroscopic ellipsometry (SE) for real-time composition determination during molecular beam epitaxy (MBE) growth of Hg1−xCdxTe alloys with x>0.5 is reported. Techniques previously developed for SE determination of composition in long-wavelength infrared (LWIR) HgCdTe have been successfully extended to near-infrared HgCdTe avalanche photodiode (APD) device structures with x values in the range of 0.6–0.8. Ellipsometric data collected over a spectral range of 1.7–5 eV were used to measure depth profiles of HgCdTe alloy composition through the use of an optical model of the growth surface. The optical model used a dielectric-function database collected through the growth of a set of HgCdTe calibration samples with x ranging from 0.6 to 0.8. The sensitivity of this SE method of composition determination is estimated to be Δx ∼0.0002 at x=0.6, which is sufficiently low to sense composition changes arising from flux variations of less than 0.1%. Errors in composition determination because of Hg-flux variations appear to be inconsequential, while substrate-temperature fluctuations have been observed to alter the derived composition at a rate of −0.0004/°C. By comparing the composition inferred from SE and postgrowth 300 K IR transmission measurements on a set of APD device structures, the run-to-run precision of the Se-derived composition (at x=0.6) is estimated to be ±0.0012, which is equivalent to the precision achieved with the same instrumentation during the growth of mid-wavelength infrared (MWIR) HgCdTe alloys in the same MBE system.  相似文献   

18.
The fabrication of high-quality focal plane arrays from HgCdTe layers grown by molecular beam epitaxy (MBE) requires a high degree of lateral uniformity in material properties such as the alloy composition, doping concentration, and defect density. While it is well known that MBE source flux nonuniformity can lead to radial compositional variation for rotating substrates, we have also found that composition can be affected significantly by lateral variations in substrate temperature during growth. In diagnostic experiments, we systematically varied the substrate temperature during MBE and quantified the dependence of HgCdTe alloy composition on substrate temperature. Based on these results, we developed a methodology to quickly and nondestructively characterize MBE-grown layers using postgrowth spatial mapping of the cutoff wavelength from the Fourier transform infrared (FTIR) transmission at 300 K, and we were able to obtain a quantitative relationship between the measured spatial variations in cutoff and the substrate temperature lateral distribution during growth. We refined this methodology by more directly inferring the substrate temperature distribution from secondary ion mass spectroscopy (SIMS) measurements of the As concentration across a wafer, using the fact that the As incorporation rate in MBE-grown p-type layers is highly sensitive to substrate temperature. Combining this multiple-point SIMS analysis with FTIR spatial mapping, we demonstrate how the relative contributions from flux nonuniformity and temperature variations on the lateral composition uniformity can be separated. This capability to accurately map the lateral variations in the substrate temperature has been valuable in optimizing the mounting and bonding of large substrates for MBE growth, and can also be valuable for other aspects of MBE process development.  相似文献   

19.
Transmission electron microscopy (TEM) was used to evaluate the microstructure of molecular beam epitaxy (MBE) grown (211)B oriented HgCdTe films. TEM analysis of in-situ doped p-on-n and n-p-n device structures will be presented. Under fully optimized growth conditions the substrate-epilayer interface is free of threading dislocations and twins, and a high degree of structural integrity is retained throughout the entire device structure. However, under non-optimal growth conditions that employ high Hg/Te flux ratios, twins can be generated in the p-type layer of p-on-n device structure, resulting in roughness and facetting of the film surface. We propose a mechanism for twin formation that is associated with surface facetting. TEM evaluation of voids, threading dislocations and Te-precipitates in HgCdTe films are also discussed.  相似文献   

20.
A robust process has been developed for the reproducible growth of in-situ doped Hg1−xCdxTe:As alloys by molecular beam epitaxy. Net hole concentrations in excess of 5 x 1017 cm−3, with peak mobilities >200 cm2/Vs were measured in Hg0.74Cd0.26Te:As films. The p-type layers were twin-free and consistently exhibit narrow x-ray rocking curves (<40 arc sec). The reproducible growth of small lots of p-on-n LWIR detector structures has been established. For a typical lot consisting of 13 layers, the average x-value of the n-type base layer was 0.226 with a standard deviation of 0.003. The lateral compositional uniformity across a 2.5 cm × 2.5 cm wafer was × = +- 0.0006. High performance p-on-n LWIR diodes were fabricated that exhibited RoAo values (0-fov at 78K) as large as 350 Q cm2 at 10.4 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号