首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the effect of the cannabinoid receptor agonist, WIN 55212-2, on the electrically evoked release of [14C]acetylcholine (ACh) from superfused brain slices from the hippocampus, a region with a high density of cannabinoid receptors. A comparison was also made with [14C]ACh release from the nucleus accumbens, which has relatively fewer cannabinoid receptors. In the hippocampal slices, WIN 55212-2 produced a dose-dependent inhibition of [14C]ACh release, with an EC50 of 0.03 microM and a maximal inhibition of 81% at 1 microM. In the nucleus accumbens slices, WIN 55212-2 produced a weak inhibition of [14C]ACh release, which did not quite reach statistical significance. The inhibition of electrically evoked hippocampal [14C]ACh release by WIN 55212-2 could be prevented by the cannabinoid receptor antagonist, SR 141716A (EC50, 0.3-1.0 microM). In addition to antagonizing the effects of WIN 55212-2, SR 141716A alone produced a 2-fold potentiation of the electrically stimulated [14C]ACh release in this region (EC50, 0.1-0.3 microM). By contrast, in nucleus accumbens slices, no potentiation of the stimulated release of [14C]ACh release by SR 141716A was observed. Basal [14C]ACh release was unaffected by WIN 55212-2 or SR 141716A in either area. These results suggest that cannabinoid receptor activation can produce a strong inhibition of ACh release in the hippocampus. Furthermore, the potentiation of ACh release in the hippocampus by SR 141716A alone suggests either that this compound is an inverse agonist at cannabinoid receptors or it is antagonizing the actions of an endogenous ligand acting on these receptors.  相似文献   

2.
SR 141716A belongs to a new class of compounds (diarylpyrazole) that inhibits brain cannabinoid receptors (CB1) in vitro and in vivo. The present study showed that [3H]-SR 141716A binds with high affinity (Kd=0.61 +/- 0.06 nM) to a homogenous population of binding sites (Bmax=0.72 +/- 0.05 pmol/mg of protein) in rate whole brain (minus cerebellum) synaptosomes. This specific binding was displaced by known cannabinoid receptor ligands with the following rank order of potency SR 141716A > CP 55,940 > WIN 55212-2 = delta9-THC > anandamide. Apart from anandamide, all these compounds were found to interact competitively with the binding sites labeled by [3H]-SR 141716A. On the other hand, agents lacking affinity for cannabinoid receptors were unable to displace [3H]-SR 141716A from its binding sites (IC50 > 10 microM). In addition, the binding of [3H]-SR 141716A was insensitive to guanyl nucleotides. Regional rat brain distribution of CB1 cannabinoid receptors detected by [3H]-SR 141716A saturation binding and autoradiographic studies, showed that this distribution was very similar to that found for [3H]-CP 55,940. In vivo, the [3H]-SR 141716A binding was displaced by SR 141716A with ED50 values of 0.39 +/- 0.07 and 1.43 +/- 0.29 mg/kg following intraperitoneal and oral administration, respectively. Finally, the [3H]-SR 141716A binding sites remained significantly occupied for at least 12 hr following oral administration of 3 mg/kg SR 141716A. Taken together, these results suggest that SR 141716A in its tritiated form is a useful research tool for labeling brain cannabinoid receptors (CB1) in vitro and in vivo.  相似文献   

3.
We have investigated the nature of cannabinoid receptors in guinea-pig small intestine by establishing whether this tissue contains cannabinoid receptors with similar binding properties to those of brain CB1 receptors. The cannabinoids used were the CB1-selective antagonist SR141716A, the CB2-selective antagonist SR144528, the novel cannabinoid receptor ligand, 6'-azidohex-2'-yne-delta8-tetrahydrocannabinol (O-1184), and the agonists CP55940, which binds equally well to CB1 and CB2 receptors, and WIN55212-2, which shows marginal CB2 selectivity. [3H]-CP55940 (1 nM) underwent extensive specific binding both to forebrain membranes (76.3%) and to membranes obtained by sucrose density gradient fractionation of homogenates of myenteric plexus-longitudinal muscle of guinea-pig small intestine (65.2%). Its binding capacity (Bmax) was higher in forebrain (4281 fmol mg(-1)) than in intestinal membranes (2092 fmol mg(-1)). However, the corresponding KD values were not significantly different from each other (2.29 and 1.75 nM respectively). Nor did the Ki values for its displacement by CP55940, WIN55212-2, O-1184, SR141716A and SR144528 from forebrain membranes (0.87, 4.15, 2.85, 5.32 and 371.9 respectively) differ significantly from the corresponding Ki values determined in experiments with intestinal membranes (0.99, 5.03, 3.16, 4.95 and 361.5 nM respectively). The Bmax values of [3H]-CP55940 and [3H]-SR141716A in forebrain membranes did not differ significantly from each other (4281 and 5658 fmol mg(-1)) but were both greater than the Bmax of [3H]-WIN55212-2 (2032 fmol mg(-1)). O-1184 (10 or 100 nM) produced parallel dextral shifts in the log concentration-response curves of WIN55212-2 and CP55940 for inhibition of electrically-evoked contractions of the myenteric plexus-longitudinal muscle preparation, its KD values being 0.20 nM (against WIN55212-2) and 0.89 nM (against CP55940). We conclude that cannabinoid binding sites in guinea-pig small intestine closely resemble CB1 binding sites of guinea-pig brain and that 0-1184 behaves as a cannabinoid receptor antagonist in the guinea-pig myenteric plexus-longitudinal muscle preparation.  相似文献   

4.
The binding of [123I]AM251 (a radioiodinated analog of the cannabinoid CB1 receptor antagonist SR141716A) was compared to that of [3H]CP 55,940 in mouse and rat brain preparations. Scatchard analysis of the binding of [123I]AM251 and [3H]CP 55,940 to membranes prepared from mouse cerebellum, striatum and hippocampus yielded similar Bmax values (15-41 pmol/g wet wt tissue). Kd values were lower for [123I]AM251 (0.23-0.62 nM) than for [3H]CP 55,940 (1.3-4 nM). CP 55,940 and SR141716A increased dissociation of [123I]AM251 from binding sites in mouse cerebellar homogenates to a similar extent. The structurally dissimilar cannabinoid receptor ligands THC, methanandamide, WIN 55, 212-2, CP 55,940 and SR141716A were each able to fully compete with binding of both [123I]AM251 and [3H]CP 55,940 in mouse cerebellum. In vitro autoradiography demonstrated that the distribution of binding sites for [123I]AM251 in rat brain was very similar to published distributions of binding sites for [3H]CP 55,940. Together, these observations suggest that AM251 binds to the same site (the cannabinoid CB1 receptor) in rodent brains as CP 55,940. However, the binding site domains which interact with AM251 and CP 55,940 may not be identical, since IC50 values for cannabinoid receptor ligands depended on whether [123I]AM251 or [3H]CP 55,940 was used as radioligand.  相似文献   

5.
Anandamide is the newly discovered endogenous cannabinoid ligand that binds to brain cannabinoid receptors and shares most, but not all, of the pharmacological properties of delta 9-THC. Therefore, this study was undertaken to determine whether its interaction with the CB1 receptor in brain was identical to that of delta 9-THC. Anandamide depressed spontaneous activity and produced hypothermia, antinociception and immobility in mice after i.v. administration. However, none of these effects was blocked by pretreatment with the selective CB1 antagonist, SR 141716A. However, the metabolically stable analog 2-methyl-2'-fluoroethylanandamide produced reductions in motor activity and antinociception in mice, effects that were blocked by the antagonist. To determine whether anandamide's receptor binding mimicked that of other cannabinoids, an autoradiographic comparison of anandamide, SR 141716A and CP 55,940 competition for [3H]CP55,940 binding was conducted throughout rat brain. The receptor affinities for all three compounds did not change according to brain area. As expected, Bmax values differed dramatically among differ brain areas. However, the Bmax values for each brain area were similar regardless of the compound used for displacement. These data suggest that anandamide, SR 141716A and CP 55,940 compete for the same cannabinoid receptor throughout brain despite SR 141716A's failure to block anandamide's pharmacological effects. Although there is no question that anandamide binds to the cannabinoid receptor, failure of SR 141716A to block its pharmacological effects in mice poses a dilemma. The results presented herein raise the possibility that anandamide may not be producing all of its effects by a direct interaction with the CB1 receptor.  相似文献   

6.
The present study investigated the effects of the cannabinoid receptor agonist CP 55,940 (1-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl) phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol) and the cannabinoid receptor antagonist SR 141716A (N-(piperidin-l-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1 H-pyrazole-3-carboxamide hydrochloride) on ultrasonic vocalizations, body temperature and activity in 11-13-day-old rat pups. Testing occurred in a 5-min session 30 min following drug administration. CP 55,940 produced a dose-dependent decrease in ultrasonic vocalizations, with a 1000-micrograms/kg dose causing an almost complete inhibition of calls. Doses of 100 and 1000 micrograms/kg of CP 55,940, but not 10 micrograms/kg, caused significant hypothermia in the pups and the 1000 micrograms/kg dose also inhibited activity. The cannabinoid receptor antagonist SR 141716A (20 mg/kg) reversed the effects of 1000 micrograms/kg CP 55,940 on ultrasonic vocalizations and body temperature, but the benzodiazepine receptor antagonist flumazenil (20 mg/kg), the dopamine D1 receptor antagonist SCH 23390 (0.5 mg/kg) and the opioid receptor antagonist naloxone (1 mg/kg) did not. When administered alone, SR 141716A (20 mg/kg) increased pup ultrasonic vocalizations without affecting body temperature or activity. These results indicate that cannabinoids modulate ultrasonic vocalization production in rat pups in a manner that is independent of hypothermia. The increase in ultrasonic vocalizations produced by SR 141716A is one of the first reported behavioural effects of this drug and suggests that the endogenous cannabinoid ligand anandamide may be involved in the regulation of ultrasonic vocalizations.  相似文献   

7.
The cannabinoid receptors expressed in the mouse neuroblastoma X rat glioma NG108-15 cell and the rat pituitary tumor GH4C1 cell were determined by polymerase chain reaction, dideoxysequencing and pharmacologically. The CB1 but not the CB2 or CB1A cannabinoid receptor was found in both cell lines. The cDNA identified in GH4C1 cells corresponds to the rat CB1 receptor. Interestingly, NG108-15 cells express two distinct cDNAs, one corresponds to the rat and the other to the mouse CB1 receptor. The newly developed CB1 receptor selective antagonist SR141716A was found to reverse cannabinoid agonist (WIN55212-2 or CP55940)-induced adenylyl cyclase inhibition. These results provide more direct evidence that the CB1 receptor is mediating the pharmacological actions of cannabinoids in NG108-15 and GH4C1 cells.  相似文献   

8.
Previous studies indicate that the CB1 cannabinoid receptor antagonist, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-met hyl-1H-pyrazole-3-carboxamide HCl (SR141716A), inhibits the anandamide- and delta9-tetrahydrocannabinol- (THC) induced hypotension and bradycardia in anesthetized rats with a potency similar to that observed for SR141716A antagonism of THC-induced neurobehavioral effects. To further test the role of CB1 receptors in the cardiovascular effects of cannabinoids, we examined two additional criteria for receptor-specific interactions: the rank order of potency of agonists and stereoselectivity. A series of cannabinoid analogs including the enantiomeric pair (-)-11-OH-delta9-THC dimethylheptyl (+)-11-OH-delta9-THC dimethylheptyl were evaluated for their effects on arterial blood pressure and heart rate in urethane anesthetized rats. Six analogs elicited pronounced and long lasting hypotension and bradycardia that were blocked by 3 mg/kg of SR141716A. The rank order of potency was (-)-11-OH-delta9-THC dimethylheptyl > or = (-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-4-[3-hydroxy-propyl]c yclohexan-1-ol > (-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-4-[3-hydroxy-propyl]c yclohexan-1-ol > THC > anandamide > or = (-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-4-[3-hydroxy-propyl]c yclohexan-1-ol, which correlated well with CB1 receptor affinity or analgesic potency (r = 0.96-0.99). There was no hypotension or bradycardia after palmitoylethanolamine or (+)-11-OH-delta9-THC dimethylheptyl. An initial pressor response was also observed with THC and anandamide, which was not antagonized by SR141716A. We conclude that the similar rank orders of potency, stereoselectivity and sensitivity to blockade by SR141716A indicate the involvement of CB1-like receptors in the hypotensive and bradycardic actions of cannabinoids, whereas the mechanism of the pressor effect of THC and anandamide remains unclear.  相似文献   

9.
1. The purpose of these experiments was to determine whether or not the endothelium-dependent hyperpolarizations of the vascular smooth muscle cells (observed in the presence of inhibitors of nitric oxide synthase and cyclo-oxygenase) can be attributed to the production of an endogenous cannabinoid. 2. Membrane potential was recorded in the guinea-pig carotid, rat mesenteric and porcine coronary arteries by intracellular microelectrodes. 3. In the rat mesenteric artery, the cannabinoid receptor antagonist, SR 141716 (1 microM), did not modify either the resting membrane potential of smooth muscle cells or the endothelium-dependent hyperpolarization induced by acetylcholine (1 microM) (17.3 +/- 1.8 mV, n = 4 and 17.8 +/- 2.6 mV, n = 4, in control and presence of SR 141716, respectively). Anandamide (30 microM) induced a hyperpolarization of the smooth muscle cells (12.6 +/- 1.4 mV, n = 13 and 2.0 +/- 3.0 mV, n = 6 in vessels with and without endothelium, respectively) which could not be repeated in the same tissue, whereas acetylcholine was still able to hyperpolarize the preparation. The hyperpolarization induced by anandamide was not significantly influenced by SR 141716 (1 microM). HU-210 (30 microM), a synthetic CB1 receptor agonist, and palmitoylethanolamide (30 microM), a CB2 receptor agonist, did not influence the membrane potential of the vascular smooth muscle cells. 4. In the rat mesenteric artery, the endothelium-dependent hyperpolarization induced by acetylcholine (1 microM) (19.0 +/- 1.7 mV, n = 6) was not altered by glibenclamide (1 microM; 17.7 +/- 2.3 mV, n = 3). However, the combination of charybdotoxin (0.1 microM) plus apamin (0.5 microM) abolished the acetylcholine-induced hyperpolarization and under these conditions, acetylcholine evoked a depolarization (7.7 +/- 2.7 mV, n = 3). The hyperpolarization induced by anandamide (30 microM) (12.6 +/- 1.4 mV, n = 13) was significantly inhibited by glibenclamide (4.0 +/- 0.4 mV, n = 4) but not significantly affected by the combination of charybdotoxin plus apamin (17.3 +/- 2.3 mV, n = 4). 5. In the guinea-pig carotid artery, acetylcholine (1 microM) evoked endothelium-dependent hyperpolarization (18.8 +/- 0.7 mV, n = 15). SR 141716 (10 nM to 10 microM), caused a direct, concentration-dependent hyperpolarization (up to 10 mV at 10 microM) and a significant inhibition of the acetylcholine-induced hyperpolarization. Anandamide (0.1 to 3 microM) did not influence the membrane potential. At a concentration of 30 microM, the cannabinoid agonist induced a non-reproducible hyperpolarization (5.6 +/- 1.3 mV, n = 10) with a slow onset. SR 141716 (1 microM) did not affect the hyperpolarization induced by 30 microM anandamide (5.3 +/- 1.5 mV, n = 3). 6. In the porcine coronary artery, anandamide up to 30 microM did not hyperpolarize or relax the smooth muscle cells. The endothelium-dependent hyperpolarization and relaxation induced by bradykinin were not influenced by SR 141716 (1 microM). 7. These results indicate that the endothelium-dependent hyperpolarizations, observed in the guinea-pig carotid, rat mesenteric and porcine coronary arteries, are not related to the activation of cannabinoid CB1 receptors.  相似文献   

10.
The binding of a classical cannabinoid agonist, [3H]R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrol[1,2 ,3-de]-1,4-benzoxazin-6-yl)(1-napthalenyl)methanone monomethanesulfonate ([3H] WIN55212-2), and a selective cannabinoid receptor (CB1) antagonist, N-(piperidin-1-yl)-5-(4-chlorophenyl)1-(2,4-dichlorophenyl)-4-meth yl-1H-pyrazole-3-carboxamide hydrochloride ([3H]SR141716A), to rat cannabinoid receptors was evaluated using rat cerebellar membranes. Guanine nucleotides inhibited [3H]WIN55212-2 binding by approximately 50% at 10 microM and enhanced [3H]SR141716A binding very slightly. In the same tissue, the binding of guanosine 5'-O-[gamma-[35S]thio]triphosphate ([35S]GTP-gamma-S) was characterized and the influence of cannabinomimetics evaluated on this binding. Cannabinoid receptor agonists enhanced [35S]GTP-gamma-S binding, whereas SR141716A was devoid of action by itself but antagonized the action of cannabinoid receptor agonists. The good correlation obtained between the half maximum efficient concentration (EC50) values in [35S]GTP-gamma-S binding and the IC50 values [3H]WIN55212-2 binding shows that [35S]GTP-gamma-S binding could be a good functional assay for brain cannabinoid receptors.  相似文献   

11.
The CB1 cannabinoid receptor antagonist SR 141716A abolished the inhibition of Ca2+ currents by the agonist WIN 55,212-2. However, SR 141716A alone increased Ca2+ currents, with an EC50 of 32 nM, in neurons that had been microinjected with CB1 cRNA. For an antagonist to elicit an effect, some receptors must be tonically active. Evidence for tonically active CB1 receptors was seen as enhanced tonic inhibition of Ca2+ currents. Preincubation with anandamide failed to enhance the effect of SR 141716A, indicating that anandamide did not cause receptor activity. Under Ca2+-free conditions designed to block the Ca2+-dependent formation of anandamide and sn-2-arachidonylglycerol, SR 141716A again increased the Ca2+ current. The Ca2+ current was tonically inhibited in neurons expressing the mutant K192A receptor, which has no affinity for anandamide, demonstrating that this receptor is also tonically active. SR 141716A had no effect on the Ca2+ current in these neurons, but SR 141716A could still antagonize the effect of WIN 55, 212-2. Thus, the K192 site is critical for the inverse agonist activity of SR 141716A. SR 141716A appeared to become a neutral antagonist at the K192A mutant receptor. Native cannabinoid receptors were studied in male rat major pelvic ganglion neurons, where it was found that WIN 55,212-2 inhibited and SR 141716A increased Ca2+ currents. Taken together, our results demonstrate that a population of native and cloned CB1 cannabinoid receptors can exist in a tonically active state that can be reversed by SR 141716A, which acts as an inverse agonist.  相似文献   

12.
The endogenous cannabinoid ligand anandamide (arachidonylethanolamide) inhibited the intestinal passage of a charcoal meal when administered s.c. in mice at doses ranging from 0.1 to 50 mg/kg. This effect was prevented by the cannabinoid CB1 receptor antagonist SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide x HCl] (1 mg/kg s.c.), but it was not affected by the anandamide transport inhibitor, N-(4-hydroxyphenyl) arachidonylethanolamide (AM404) (50 mg/kg, s.c.). The results indicate that anandamide modulates intestinal motility in mice by activating cannabinoid CB1 receptors. They also suggest that anandamide transport, which was previously shown to participate in terminating neural and vascular responses to anandamide, does not contribute to anandamide inactivation in intestinal tissue.  相似文献   

13.
The distribution of iodinated margatoxin ([125I]margatoxin) binding sites in rat was investigated by autoradiography. Rat striatum expresses a high density of margatoxin binding sites and, therefore, the effects of margatoxin, charybdotoxin and iberiotoxin have been studied on [3H]dopamine release from rat striatal slices in vitro. Margatoxin (0.1-100 nM) and charybdotoxin (10-1000 nM), but not iberiotoxin increased the spontaneous and the electrically evoked [3H]dopamine release. [3H]dopamine release by margatoxin was inhibited by tetrodotoxin and omega-conotoxin GVIA, but not by atropine, naloxone, N(omega)-nitro-L-arginine and neurokinin or neurotensin receptor antagonists. In the buffer solution used for release experiments, [125I]margatoxin labels a maximum of 0.12 pmol of sites/mg protein in rat striatal membranes with a Kd of 5 pM. [125I]margatoxin binding was inhibited by margatoxin (Ki of 4 pM), charybdotoxin (Ki of 162 pM) but not by iberiotoxin. We conclude that inhibition of margatoxin-sensitive voltage-gated K+ channels increases [3H]dopamine release demonstrating their role in repolarization of nigrostriatal projections. In contrast, iberiotoxin-sensitive, high-conductance Ca2+-activated K+ channels are not involved in release of [3H]dopamine.  相似文献   

14.
In our previous study, we demonstrated that chronic ethanol (EtOH) exposure down-regulated the cannabinoid receptors (CB1) in mouse brain synaptic plasma membrane (SPM) (Basavarajappa et al., Brain Res. 793 (1998) 212-218). In the present study, we investigated the effect of chronic EtOH (4-day inhalation) on the CB1 agonist stimulated guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTP gamma S) binding in SPM from mouse. Our results indicate that the net CP55,940 stimulated [35S]GTP gamma S binding was increased with increasing concentrations of CP55,940 and GDP. This net CP55,940 (1.5 microM) stimulated [35S]GTP gamma S binding was reduced significantly (-25%) in SPM from chronic EtOH group (175 +/- 5.25%, control; 150 +/- 8.14%, EtOH; P < 0.05). This effect occurs without any significant changes on basal [35S]GTP gamma S binding (152.1 +/- 10.7 for control, 147.4 +/- 5.0 fmol/mg protein for chronic EtOH group, P > 0.05). Non-linear regression analysis of net CP55,940 stimulated [35S]GTP gamma S binding in SPM showed that the Bmax of cannabinoid stimulated binding was significantly reduced in chronic EtOH exposed mouse (Bmax = 7.58 +/- 0.22 for control; 6.42 +/- 0.20 pmol/mg protein for EtOH group; P < 0.05) without any significant changes in the G-protein affinity (Kd = 2.68 +/- 0.24 for control; 3.42 +/- 0.31 nM for EtOH group; P > 0.05). The pharmacological specificity of CP55,940 stimulated [35S]GTP gamma S binding in SPM was examined with CB1 receptor antagonist, SR141716A and these studies indicated that CP55,940 stimulated [35S]GTP gamma S binding was blocked by SR141716A with a decrease (P < 0.05) in the IC50 values in the SPM from chronic EtOH group. These results suggest that the observed down-regulation of CB1 receptors by chronic EtOH has a profound effect on desensitization of cannabinoid-activated signal transduction and possible involvement of CB1 receptors in EtOH tolerance and dependence.  相似文献   

15.
1. The effect of cannabinoid drugs has been investigated on cholinergic and non-adrenergic non-cholinergic (NANC) contractile responses to the circular smooth muscle of guinea-pig ileum elicited by electrical field stimulation (EFS). 2. The cannabinoid receptor agonist WIN 55,212-2 (1-1000 nM) and the putative endogenous ligand anandamide (0.1-100 microM) both produced a concentration-dependent inhibition of the cholinergic (9-57% and 1-51% inhibition) and NANC (9 55% and 2-57% inhibition) contractile responses. WIN 55,212-2 and anandamide did not modify the contractions produced by exogenous acetylcholine or substance P. 3. Apamin (30 nM), a blocker of Ca2+-activated K+ channels, reduced the inhibitory effect of WIN 55,212-2 on cholinergic, but not NANC, contractile response. NG-nitro-L-arginine methyl ester (100 microM), an inhibitor of nitric oxide synthase, or naloxone (1 microM), an opioid receptors antagonist, did not modify the inhibitory effect of WIN 55,212-2 on both cholinergic and NANC contractions. 4. The inhibitory effects of WIN 55,212-2 and anandamide on both cholinergic and NANC contractile response was competitively antagonized by the cannabinoid CB1 receptor antagonist SR 141716A (10-1000 nM). 5. In absence of other drugs, SR 141716A (1-1000 nM) enhanced cholinergic (1-45% increase) and NANC (2-38% increase) contractile responses elicited by electrical stimulation, but did not modify the contractions produced by acetylcholine or substance P. 6. It is concluded that activation of prejunctional cannabinoid CB1 receptors produces inhibition of cholinergic and NANC excitatory responses in the guinea-pig circular muscle. The inhibition of cholinergic (but not NANC) transmission involves activation of apamin-sensitive K+ channels. In addition, an endogenous cannabinoid ligand could inhibit cholinergic and NANC transmission in the guinea-pig ileal circular muscle.  相似文献   

16.
Based on both binding and functional data, this study introduces SR 144528 as the first, highly potent, selective and orally active antagonist for the CB2 receptor. This compound which displays subnanomolar affinity (Ki = 0.6 nM) for both the rat spleen and cloned human CB2 receptors has a 700-fold lower affinity (Ki = 400 nM) for both the rat brain and cloned human CB1 receptors. Furthermore it shows no affinity for any of the more than 70 receptors, ion channels or enzymes investigated (IC50 > 10 microM). In vitro, SR 144528 antagonizes the inhibitory effects of the cannabinoid receptor agonist CP 55,940 on forskolin-stimulated adenylyl cyclase activity in cell lines permanently expressing the h CB2 receptor (EC50 = 10 nM) but not in cells expressing the h CB1 (no effect at 10 microM). Furthermore, SR 144528 is able to selectively block the mitogen-activated protein kinase activity induced by CP 55,940 in cell lines expressing h CB2 (IC50 = 39 nM) whereas in cells expressing h CB1 an IC50 value of more than 1 microM is found. In addition, SR 144528 is shown to antagonize the stimulating effects of CP 55,940 on human tonsillar B-cell activation evoked by cross-linking of surface Igs (IC50 = 20 nM). In vivo, after oral administration SR 144528 totally displaced the ex vivo [3H]-CP 55,940 binding to mouse spleen membranes (ED50 = 0.35 mg/kg) with a long duration of action. In contrast, after the oral route it does not interact with the cannabinoid receptor expressed in the mouse brain (CB1). It is expected that SR 144528 will provide a powerful tool to investigate the in vivo functions of the cannabinoid system in the immune response.  相似文献   

17.
The purpose of this study was to investigate whether anandamide induces cannabimimetic responses, mainly mobilization of arachidonic acid, in primary cultures of rat brain cortical astrocytes. Confluent monolayer cultures of astrocytes, prelabeled with [3H]arachidonic acid, were incubated with anandamide or delta9-tetrahydrocannabinol (delta9-THC) in the presence or absence of thimerosal, a fatty acid acyl CoA transferase inhibitor and phenylmethylsulfonyl fluoride, an amidohydrolase inhibitor. Anandamide and delta9-THC induced a time- and concentration-dependent release of arachidonic acid in the presence, but not in the absence, of thimerosal. Anandamide- and delta9-THC-stimulated arachidonic acid release was pertussis toxin-sensitive, indicating a receptor/G-protein involvement. A novel and selective cannabinoid receptor antagonist, SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4- methyl-1H-pyrazole-3-carboximide hydrochloride], blocked the arachidonic acid release, suggesting a cannabinoid receptor-mediated pathway. In astrocytes, the magnitude of anandamide-induced arachidonic acid release was equal to that released by equimolar concentrations of delta9-THC. Furthermore, direct assay of amidohydrolase activity indicated that degradation of anandamide into arachidonic acid and ethanolamine was negligible in cortical astrocytes. Our results suggest that anandamide stimulates receptor-mediated release of arachidonic acid, and the receptor may be the cannabinoid receptor. Astrocytes, containing a cannabinoid receptor and lower or negligible amidohydrolase activity, may be an important brain cell model in which to study the cannabimimetic effects of anandamide at a cellular and molecular level.  相似文献   

18.
The effects of SR140333 and SR48968 (neurokinin1 and neurokinin2 tachykinin receptor antagonists, respectively) on the N-methyl-D-aspartate-evoked release of [3H]acetylcholine (previously formed from [3H]choline) were investigated in striosome-enriched areas and in the matrix of the rat striatum using an in vitro microsuperfusion method. In both striatal compartments, SR140333 and SR48968 did not modify the 50 microM N-methyl-D-aspartate-evoked release of [3H]acetylcholine. However, in low concentrations, both SR140333 (0.1 microM to 1 pM) and SR48968 (0.1 microM to 0.1 nM) markedly enhanced the 1 mM N-methyl-D-aspartate (+10 microM D-serine)-evoked release of [3H]acetylcholine in striosome-enriched areas. These responses were dopamine-dependent since they were not observed any more following the local blockade of D2 receptors by sulpiride or of dopamine synthesis by alpha-methyl-p-tyrosine. A dopamine-dependent disinhibitory effect (of lower amplitude) on the 1 mM N-methyl-D-aspartate (+10 microM D-serine)-evoked release of [3H]acetylcholine was also induced by SR48968 (0.1 microM to 0.1 nM) (but not by SR140333) in the matrix. In addition, in the matrix, as shown only in the presence of alpha-methyl-p-tyrosine, both SR140333 and SR48968 reduced the 1 mM N-methyl-D-aspartate (+10 microM D-serine)-evoked response and these non-dopamine-mediated inhibitory effects only occurred at the highest tested concentration (0.1 microM) of the antagonists. Indicating the specificity of these responses, the effects of SR140333 were reproduced by RP67580, another neurokinin1 receptor antagonist and, as expected from previous binding studies, corresponding SR140333 and SR48968 enantiomers were without effect. These results suggest that under potent stimulation of N-methyl-D-aspartate receptors, endogenously released substance P and neurokinin A (or related tachykinins) regulate differently the N-methyl-D-aspartate-evoked release of [3H]acetylcholine in striosomes and in the matrix. The inhibitory effects of these tachykinins on the evoked release of [3H]acetylcholine are mediated by dopamine. On the contrary, their facilitatory responses are only observed in the matrix under blockade of dopamine transmission.  相似文献   

19.
We have investigated whether there are cannabinoid CB2 receptors that can mediate cannabinoid-induced inhibition of electrically evoked contractions in the mouse vas deferens or guinea-pig myenteric plexus-longitudinal muscle preparation. Our results showed that mouse vas deferens and guinea-pig whole gut contain cannabinoid CB1 and CB2-like mRNA whereas the myenteric plexus preparation seemed to contain only cannabinoid CB1 mRNA. JWH-015 (1-propyl-2-methyl-3-( -naphthoyl)indole) and JWH-051 (1-deoxy-11-hydroxy-delta8-tetrahydrocannabinol-dimethylheptyl+ ++), which have higher affinities for CB2 than CB1 cannabinoid binding sites, inhibited electrically evoked contractions of both tissues in a concentration related manner. This inhibition was attenuated by 31.62 nM of the cannabinoid CB1 receptor selective antagonist SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride] only in the myenteric plexus preparation. Vasa deferentia from delta9-tetrahydrocannabinol-pretreated mice (20 mg/kg i.p. once daily for two days) showed reduced sensitivity to JWH-015 and JWH-051. The results suggest that these compounds exert their inhibitory effects through cannabinoid CB1 receptors in the myenteric plexus preparation, but mainly through CB2-like cannabinoid receptors in the vas deferens.  相似文献   

20.
We investigated the effect of the cannabinoid agonist (+)WIN-55212-2 on human ileum longitudinal smooth muscle preparations, either electrically stimulated or contracted by carbachol. Electrical field stimulation mostly activated cholinergic neurons, since atropine and tetrodotoxin (TTX), alone or coincubated, reduced twitch responses to a similar degree (85%). (+)WIN-55212-2 concentration-dependently inhibited twitch responses (IC50 73 nM), but had no additive effect with atropine or TTX. The cannabinoid CB1 receptor antagonist SR 141716 (pA2 8.2), but not the CB2 receptor antagonist, SR 144528, competitively antagonized twitch inhibition by (+)WIN-55212-2. Atropine but not (+)WIN-55212-2 or TTX prevented carbachol-induced tonic contraction. These results provide functional evidence of the existence of prejunctional cannabinoid CB1-receptors in the human ileum longitudinal smooth muscle. Agonist activation of these receptors prevents responses to electrical field stimulation, presumably by inhibiting acetylcholine release. SR 141716 is a potent and competitive antagonist of cannabinoid CB1 receptors naturally expressed in the human gut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号