首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on detailed 3‐dimensional (3‐D) elastic finite element (FE) analyses, the present paper provides stress intensity factors (SIFs) for plates with slanted through‐wall crack (TWC) and cylinders with slanted circumferential TWC. Regarding loading conditions, axial tension was considered for the plates, whereas axial tension, global bending and internal pressure were considered for the cylinders. To cover a practical range, the geometric variables affecting the SIF were systematically varied. Based on FE results, SIFs along the crack front, including the inner and outer surface points, were provided. The present results can be used to evaluate the fatigue crack growth or stress corrosion cracking behaviour of a slanted TWC and furthermore to perform detailed Leak‐Before‐Break analysis considering a more realistic crack shape.  相似文献   

2.
This paper proposes elastic stress intensity factors and crack opening displacements (CODs) for a slanted axial through-wall cracked cylinder under an internal pressure based on detailed three-dimensional (3D) elastic finite element (FE) analyses. The FE model and analysis procedure were validated against existing solutions for both elastic stress intensity factor and COD of an idealized axial through-wall cracked cylinder. To cover a practical range, four different values of the ratio of the mean radius of cylinder to the thickness ( R m/ t ) were selected. Furthermore, four different values of the normalized crack length and five different values of the ratio of the crack length at the inner surface to the crack length at the outer surface representing the slant angle were selected. Based on the elastic FE results, the stress intensity factors along the crack front and CODs through the thickness at the centre of the crack were provided. These values were also tabulated for three selected points, that is, the inner and outer surfaces and at the mid-thickness. The present results can be used to evaluate the crack growth rate and leak rate of a slanted axial through-wall crack due to stress corrosion cracking and fatigue. Moreover, the present results can be used to perform a detailed leak-before-break analysis considering more realistic crack shape development.  相似文献   

3.
In the present study the problem of calculation of the stress intensity factors (SIF) of semi-elliptical cracks located in the stress concentration areas of a pressure vessel is numerically solved by advanced global-local finite element (FE) analysis. The common characteristic of the cases solved is that the stress field at the crack area varies along the axial, the circumferential, as well as, the through-the-thickness directions. SIF solutions for such problems are not available, neither analytically, nor numerically, as the currently existing solutions in the literature (numerical results, Newman-Raju empirical equations, weight function solutions, etc.) are only valid for uniform stress distribution along the axial and circumferential directions of the pressure vessel and allow variation only through-the-thickness. The crack locations considered are the intersection of the cylinder to a nozzle and the connection of the cylinder with its hemi-spherical ends. The stress intensity factors are presented in a suitable table format for various geometrical configurations of both the pressure vessel and the semi-elliptical crack, thus providing a useful tool for the fracture mechanics design of cracked pressure vessels. The modeling details of the sub-structuring methodology, employed in the analysis, are extensively discussed and the numerical approach is proven to be very efficient for the SIF calculation of pressure vessel semi-elliptical cracks.  相似文献   

4.
ABSTRACT Three-dimensional finite element analyses have been conducted to calculate the stress intensity factors for deep semi-elliptical cracks in flat plates. The stress intensity factors are presented for the deepest and surface points on semi-elliptic cracks with a/t -values of 0.9 and 0.95 and aspect ratios ( a/c ) from 0.05 to 2. Uniform, linear, parabolic or cubic stress distributions were applied to the crack face. The results for uniform and linear stress distributions were combined with corresponding results for surface cracks with a/t = 0.6 and 0.8 to derive weight functions over the range 0.05 ≤  a/c  ≤ 2.0 and 0.6 ≤  a/t  ≤ 0.95. The weight functions were then verified against finite element data for parabolic or cubic stress distributions. Excellent agreements are achieved for both the deepest and surface points. The present results complement stress intensity factors and weight functions for surface cracks in finite thickness plate developed previously.  相似文献   

5.
Stress intensity factors for surface cracks at countersunk holes   总被引:1,自引:0,他引:1  
Fatigue crack growth from countersunk fastener holes loaded in remote tensile loading was studied using the transparent polymer PMMA. A single edge corner crack at the bottom of the plate and a single internal surface crack at the sharp intersection between the bore and the countersink were induced in the PMMA specimens by pre-cracking. The specimens were then fatigue tested under constant amplitude remote tensile loading and the ‘back-calculation’ method was used to determine stress intensity factors at several crack front locations. When variations in fatigue crack closure were taken into account, the experimental stress intensity factors agreed well with the computational results at selected crack fronts.  相似文献   

6.
Stress intensity factors for inner circular cracks placed eccentrically in a fiber with round cross section were computed and are presented in this paper in both analytical and graphical form. The crack plane was perpendicular to the fiber axis and remote tensile loading was assumed. The stress intensity factors were numerically computed using the finite element method. Mesh objectivity and some other aspects of computational precision are considered. The asymptotic behaviour when the crack size and the ligament depth vanish were considered in order to formulate accurate interpolation expressions.  相似文献   

7.
This paper deals with such a kind of surface crack problem with a same depth (called a liked‐plane crack problem for short). Based on the previous investigations on an internal rectangular crack and a surface rectangular crack in an infinite solid in tension and the hybrid displacement discontinuity method, a numerical approach for the liked‐plane crack problem is presented. Numerical examples are given to illustrate the numerical approach is simple, yet accurate for calculating the stress intensity factors (SIFs) of the liked‐plane crack problem. Specifically, SIFs of a pair of cracks emanating from a surface square hole in an infinite body in tension are investigated in detail.  相似文献   

8.
Surface cracks are among the more common flaws in aircraft and pressure vessel components. Accurate stress analyses of surface-cracked components are needed for reliable prediction of their crack growth rates and fracture strengths. Several calculations of stress-intensity factors for semi-elliptical surface cracks subjected to tension have appeared in the literature. However, some of these solutions are in disagreement by 50–100%.

In this paper stress-intensity factors for shallow and deep semi-elliptical surface cracks in plates subjected to tension are presented. To verify the accuracy of the three-dimensional finite-element models employed, convergence was studied by varying the number of degrees of freedom in the models from 1500 to 6900. The 6900 degrees of freedom used here were more than twice the number used in previously reported solutions. Also, the stress-intensity variations in the boundary-layer region at the intersection of the crack with the free surface were investigated.  相似文献   


9.
The purpose of this paper is to present mode I stress intensity factor for a circumferential semi-elliptical crack on the inner surface of a hoop-wrapped steel-lined CNG cylinder. The stress intensity factors along the crack front are directly computed by 3D finite element method for a wide range of variations of the crack geometry. Also influence of many parameters such as cylinder internal pressure, composite layer thickness, composite material properties and undertaking Auto-Frettage pressure are studied on the stress intensity factor of the crack and some conclusive results are drawn. For the sake of validation of the results and because of lack of the results for a circumferential semi-elliptical crack in the literature, a semi-elliptical axial crack in a composite hoop-wrapped cylinder has been modeled and the results have been compared with those in the literature showing a good agreement.  相似文献   

10.
In this paper, the stress intensity factors are derived for an internal semi-elliptical crack in a thick-walled cylinder subjected to transient thermal stresses. First, the problem of transient thermal stresses in a thick-walled cylinder is solved analytically. Thermal and mechanical boundary conditions are assumed to act on the inner and outer surfaces of the cylinder. The quasi-static solution of the thermoelasticity problem is derived analytically using the finite Hankel transform and then, the stress intensity factors are extracted for the deepest point and the surface points of the semi-elliptical crack using the weight function method. The results show to be in accordance with those cited in the literature in the special case of steady-state problem. Using the closed-form relations extracted for the transient thermal stress intensity factors, some conclusive results are drawn.  相似文献   

11.
Exact closed-form stress intensity factor (SIF) solutions have been developed for mode-I, II and III through-thickness cracks in an infinite plate. Centre-crack problems have been analysed comprehensively in the literature, but the focus has been on the effect of simple loading about the crack centre. In the current work, the formula of Sih-Paris-Erdogan was extended to consider the difference in SIF on the left and right crack tips under an asymmetric stress field. Mathematical manipulations were performed to derive exact stress magnification factors for SIF computations and simultaneously circumvent the problem of crack-tip stress singularity. The solutions so obtained are applied to derive the residual SIFs that would act on a crack growing under the influence of the residual stress fields associated with VPPA (variable polarity plasma arc) and friction stir welds, using measured residual stress profiles.  相似文献   

12.
The aim of this paper is a collection of stress intensity factor solutions for cracks in railway axle geometries which the authors of the present special issue developed and/or used for damage tolerance analyses. These solutions comprise closed form analytical as well as tabled geometry functions and they refer to solid as well as hollow axles and various crack sites such as the T- and V-notch and the axle body.  相似文献   

13.
This paper presents a new method for predicting the stress intensity factors around a partly circumferential elliptical surface crack in a pipe. The solution is applicable to structures with both double and single curvature. The technique involves a conformal transform in conjunction with a semi-analytical approach that uses a finite element model to obtain the stress distribution in the undamaged structure. By using an indirect methodology, the model development is simplified and the analysis time is minimised. As such a coarse mesh can be used to obtain solutions for multiple crack geometries. Three examples are presented to verify this methodology. They include a partly circumferential elliptical crack under uniform tension, a pipe subject to a residual stress field, and a problem involving double curvature. For simple loading the solution compares with other published solutions to within 5% for an external crack, and to within 15% for an internal crack. For more complex loading conditions the majority of the solutions were within 5% of other published results at the deepest point, and most solutions at the surface agreed to within 15%. For the problem involving double curvature, the solutions agreed to within 4% for an internal crack, and 15% for an external crack.  相似文献   

14.
Results of finite element static stress intensity factor calculations for an annular crack around a spherical inclusion (void) are presented and compared with those from approximate analytical methods.  相似文献   

15.
Transient mode I stress intensity factors (KIT) distributions along semi-elliptical crack fronts resulting from thermal shock typical to a firing gun are investigated. KIT distributions for various crack arrays of n=2 to 48 cracks, bearing cracks of relative depths of a/W=0.1 to 0.4 and with ellipticities of a/c=0.5, 1.0 and 1.5 are evaluated for a cylindrical pressure vessel of radii ratio of R0/R=2. As decoupling between the thermal and the elastic problems is assumed, the solution is performed in two steps via the finite element (FE) method using the standard ANSYS 5.0 code. In the first step temperature distributions through the vessel's wall are evaluated for various time steps in the interval 2 to 10 msec assuming convective boundary conditions. The temperature fields evaluated in the first step serve as input to the second step, the elastic analysis, in which KIT is evaluated. The results show that KIT is usually negative, as could have been anticipated, and reaches its largest negative value at the intersection of the crack plane with the inner surface of the cylinder. In general, the negative magnitude of KIT increases as the number of cracks in the array decreases, as the crack ellipticity increases, and as time elapses from firing.  相似文献   

16.
Existing solutions for the singular stress field in the vicinity of a fractal crack tip have been adapted for a somewhat modified problem. Since the integration along the fractal curve is prohibitive and does not lend itself to the presently available mathematical treatments, a simplified one has replaced the original problem. The latter involves a smooth crack embedded in a singular stress field, for which the order of singularity is adjusted to match exactly the one obtained from the analyses pertaining to the fractal crack. Of course, this is only an approximation, and we may only hope that it leads toward correct results, at least in a cursory sense. The advantage of such an approach becomes obvious when one inspects the final closed-form solutions for (a) the stress intensity factor in mode I fractal fracture, and (b) cohesion modulus, which results from the cohesive zone model and serves as a measure of the material resistance to crack propagation. As expected for the fractal geometry employed here, our results are strongly dependent on the fractal dimension D (or roughness exponent H).  相似文献   

17.
This paper presents stress intensity factors (SIFs) of multiple semi-elliptical surface cracks in bi-material tubes subjected to internal pressure by boundary element method. In this case the water-tube boiler with oxide scale formed on the inner surface due to prolonged exposure at elevated temperature is considered as the bi-material tubes. Variations of modulus of elasticity and thickness for the oxide scale are used to evaluate their effects on the stress intensity factors. The increasing of thickness of the oxide scale causes decreasing values of the normalized stress intensity factor as the modulus of elasticity for the oxide scale is greater than that of the tube metal. Conversely, if the modulus of elasticity for the oxide scale is smaller, the increasing of thickness of the scale would also give increasing values of the normalized stress intensity factor.  相似文献   

18.
Although a lot of interface crack problems were previously treated, few solutions are available under arbitrary material combinations. This paper deals with a central interface crack in a bonded finite plate and periodic interface cracks. Then, the effects of material combination and relative crack length on the stress intensity factors are discussed. A useful method to calculate the stress intensity factor of interface crack is presented with focusing on the stress at the crack tip calculated by the finite element method.  相似文献   

19.
Stress intensity factors (SIFs) presented in the literature for corner cracks are limited to ideal quarter-circular and quarter-elliptical crack shapes. This paper presents SIF solutions for corner cracks that exhibit tunnelling, extending the range of corner crack shapes illustrated in the literature. Solutions were developed in a parametric form, obtained by empirically fitting polynomials to numerical values of SIF obtained from the FEM. A parameter was defined to quantify the extent of tunnelling. It was observed that crack shape has a significant effect on the SIF, so the consideration of equivalent quarter-circular cracks can produce inaccurate results when significant tunnelling occurs. SIF solutions for quarter-circular cracks are also presented and compared with those quoted in the literature.  相似文献   

20.
An equation for the stress intensity factor (SIF) for semi-elliptical crack has been developed. It is based on the Newman-Raju's solution for the crack in a plate under bending or tension. The equation can be applied when a stress distribution is described by a power function. Using the approach outlined, the SIF for a surface crack in a T-butt welded connection has been estimated. The results obtained can be used in a fracture-mechanics-based fatigue analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号