首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocrystalline TiO2 films were prepared on flexible Ti-metal sheets by electrophoretic deposition followed by chemical treatment with tetra-n-butyl titanate (TBT) and sintering at 450 °C. X-ray diffraction (XRD) analysis indicates that TBT treatment led to the formation of additional anatase TiO2, which plays an important role in improving the interconnection between TiO2 particles, as well as the adherence of the film to the substrate, and in modifying the surface properties of the nanocrystalline particles. The effect of TBT treatment on the electron transport in the nanocrystalline films was studied by intensity-modulated photocurrent spectroscopy (IMPS). An increase in the conversion efficiency was obtained for the dye-sensitized solar cells with TBT-treated nanocrystalline TiO2 films. The cell performance was further optimized by designing nanocrystalline TiO2 films with a double-layer structure composed of a light-scattering layer and a transparent layer. The light-scattering effect of the double-layer nanocrystalline films was evaluated by diffuse reflectance spectra. Employing the double-layer nanocrystalline films as the photoelectrodes resulted in a significant improvement in the incident photo-to-current conversion efficiency of the corresponding cells due to enhanced solar absorption by light scattering. A high conversion efficiency of 6.33% was measured under illumination with 100 mW cm−2 (AM 1.5) simulated sunlight.  相似文献   

2.
A quasi-solid-state electrolyte for the dye-sensitized solar cells was prepared following the phase inversion process. The microporous polymer electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) hybrid with different amount of TiO2 nanoparticles were prepared. The surface morphologies, the differential scanning calorimetry, and the ionic conductivity of the microporous polymer electrolyte were tested and analyzed. The results indicated that the microporous polymer electrolyte with TiO2 nanoparticles modification exhibited better ionic conductivity compared with the original P(VDF-HFP) polymer electrolyte. The optimal ionic conductivity of 0.8 mS cm−1 is obtained with the 30 wt % TiO2 nanoparticles modification. When assembled with the 30 wt % TiO2 nanoparticles modified quasi-solid-state electrolyte, the dye-sensitized TiO2 nanocrystalline solar cell exhibited the light to electricity conversion efficiency of 2.465% at light intensity of 42.6 mW cm−2, much better than the performance of original P(VDF-HFP) microporous polymer electrolyte DSSC. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Polymer electrolyte membranes based on poly(ethylene oxide) (PEO) doped with TiO2 nanoparticles were synthesized by simple solution cast technique. Mesoporous TiO2 film was prepared by doctor‐blade method. The modified polymer membranes and the mesoporous films were characterized by SEM, TEM, AFM, ionic conductivity, and J‐V measurements. Dye‐sensitized solar cells (DSSC) have been fabricated in which PEO‐polymer electrolyte doped with and without nano‐TiO2 were sandwiched between porous TiO2 and counter electrodes. The DSSC with nano‐TiO2 doped polymer electrolyte shows better performance (1.68%) in comparison with pristine polymer electrolyte (1.07%), which is due to improved ionic conductivity value in polymer electrolyte system by nano‐TiO2 doping. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
《Ceramics International》2023,49(2):1678-1689
Undoped and metal doped nanocrystalline TiO2 transparent thin films were synthesized on glass substrates via sol-gel/dip-coating method. TiO2 thin film coatings can be applied to the surfaces of solar panels to impart self-cleaning properties to them. The structural and optical properties of few nanometer-thick films were characterized by XRD, SEM, CA, AFM, XPS, and UV–Vis spectrophotometry techniques. The stoichiometric TiO2 films crystallized in anatase phase, with a particle size of ~100 nm, which were uniformly distributed on the surface. The prepared films with a roughness of ~1–5 nm, increased the hydrophilicity of the glass surface. Reducing the amount of Ti precursor (X) favored the improvement of film quality. To improve the photocatalytic activity of the TiO2 thin film, it was doped with Ni, Cd, Mo, Bi and Sr metal ions. The effect of metal doping on the photocatalytic activity of the films was investigated using the degradation process of methylene blue (MB) dye as the model contaminant. Among the prepared coatings, the Sr–TiO2 film showed the highest efficiency for MB degradation. It increased the dye degradation efficiency of the films under both UV and Vis lights. The kinetic investigations also showed that the degradation of MB by TiO2 and M ? TiO2 films obeyed the pseudo-first order kinetics.  相似文献   

5.
Cadmium sulfide (CdS) and silver sulfide (Ag2S) nanocrystals are deposited on the titanium dioxide (TiO2) nanocrystalline film on indium tin oxide (ITO) substrate to prepare CdS/Ag2S/TiO2/ITO photoelectrodes through a new method known as the molecular precursor decomposition method. The Ag2S is interposed between the TiO2 nanocrystal film and CdS nanocrystals as an energy barrier layer and a light absorber. As a consequence, the energy conversion efficiency of the CdS/Ag2S/TiO2/ITO electrodes is significantly improved. Under AM 1.5 G sunlight irradiation, the maximum efficiency achieved for the CdS(4)/Ag2S/TiO2/ITO electrode is 3.46%, corresponding to an increase of about 150% as compared to the CdS(4)/TiO2/ITO electrode without the Ag2S layer. Our experimental results show that the improved efficiency is mainly due to the formation of Ag2S layer that may increase the light absorbance and reduce the recombination of photogenerated electrons with redox ions from the electrolyte.  相似文献   

6.
Quasi solid state dye-sensitized solar cells (DSSCs) have been fabricated with organic sol or TiCl4 modified TiO2 and porous TiO2 photoanode and a triphenylamine-based dye (TPAR3) used as photosensitizer. Dark current measurements suggested that both modified TiO2 photoelectrodes had significantly reduced the recombination rate of photoelectrons due to the reduced bare FTO surface in comparison to porous photoelectrode. The DSSC based on modified TiO2 photoelectrodes showed improved photovoltaic parameters compared to the porous TiO2 photoelectrode. The overall power conversion efficiency (PCE) is 3.27%, 4.73% and 6.8% for porous, TiCl4 modified and sol modified TiO2 photoelectrodes, respectively. The improved PCE with modified TiO2 electrodes was attributed to the formation of a compact layer. This effectively improves adherence of TiO2 to FTO surface, providing a larger TiO2/FTO contact area and reducing the electron recombination by blocking the direct contact between redox electrolyte and the conductive FTO surface and enhances the electron collection efficiency.  相似文献   

7.
We suggest a simple process to fabricate a hole-patterned TiO2 electrode for a solid-state dye-sensitized solar cell (DSSC) to enhance cell performance through interfacial properties of the electrode with the electrolyte with minimum dye loading. The method involves prepatterning of SU-8 photoresist on a conducting glass, followed by the deposition of a nanocrystalline TiO2 layer, calcination at 450 °C and characterization using scanning electron microscopy (SEM). Hole-patterned TiO2 photoelectrodes yielded better solar energy conversion efficiency per dye loading compared to a conventional non-patterned photoelectrode. For example, a 50 μm hole-patterned DSSC exhibited 4.50% conversion efficiency in the solid state, which is comparable to an unpatterned flat TiO2 photoelectrode (4.57%) however the efficiency per dye loading of the former (0.986%/g) was much greater than that of the latter (0.898%/g). The improvement was attributed to improved transmittance through the electrode as well as better interfacial properties between the electrolyte and electrode, as confirmed by UV-visible spectroscopy and electrochemical impedance (EIS) analysis.  相似文献   

8.
Ke Fan  Bo Chai  Ke Dai 《Electrochimica acta》2010,55(18):5239-5244
The dye-sensitized solar cells (DSSCs) using Ti foil supporting substrate for fabricating nanocrystalline TiO2 flexible film electrodes were developed, intending to improve the photoelectrochemical properties of flexible substrate-based DSSCs. The obtained cells were characterized by electrochemical impedance spectra (EIS), open circuit voltage decay (OCVD) measurement and Tafel plots. The experimental results indicate that the most important advantage of a Ti foil-based TiO2 flexible electrode over a FTO glass-based electrode lies in its reduced sheet resistance, electron traps, and the retarded back reaction of electrons with tri-iodine ions in DSSCs. All above characteristics for the Ti substrate TiO2 films are beneficial for decreasing the charge recombination in the TiO2 electrode and prolonging the electron lifetimes for the DSSCs, as well as improvement of the overall solar conversion efficiency. The photocurrent of the cell fabricated with the Ti foil-based flexible electrode increased significantly, leading to a much higher overall solar conversion efficiency of 5.45% at 100 mW/cm2 than the cell made with FTO glass-based TiO2 electrodes. Above results demonstrate that Ti foil is a potential alternative to the conventional FTO glass substrate for the DSSCs.  相似文献   

9.
Dye-sensitized solar cells (DSSCs) are fabricated based on double-layered composite films of TiO2 nanoparticles and hollow spheres. The photoelectric conversion performances of DSSCs based on nanoparticles/nanoparticles (PP), hollow spheres/hollow spheres (HH), hollow spheres/nanoparticles (HP), and nanoparticles/hollow spheres (PH) double-layered films are investigated, and their photo-electric conversion efficiencies are 4.33, 4.72, 4.93 and 5.28%, respectively. The enhanced performance of TiO2 nanoparticles/hollow spheres double-layered composite film solar cells can be attributed to the combined effect of following factors. The light scattering of overlayer hollow spheres enhances harvesting light of the DSSCs and the underlayer TiO2 nanoparticle layer ensures good electronic contact between film electrode and the F-doped tin oxide (FTO) glass substrate. Furthermore, the high surface areas and pore volume of TiO2 hollow spheres are respectively beneficial to adsorption of dye molecules and transfer of electrolyte solution.  相似文献   

10.
Dense TiO2 and TiO2/CdSe coupled nanocrystalline thin films were synthesized onto ITO coated glass substrate by chemical route at relatively low temperature (≤100 °C). TiO2 films were nanocrystalline and crystallinity disappears after CdSe deposition as evidenced by X-ray powder diffraction. Surface morphology and physical appearance of films were studied from SEM and actual photo-images, reveals dense nature of TiO2 (10-12 nm spherical grains, faint violet) and CdSe (80-90 nm spherical grains, deep brown), respectively. Presence of two absorption edges in UV spectra implies existence of separate phases rather than composite formation. TiO2 film was found to have higher water contact angle (71°) than TiO2/CdSe (61°) and CdSe (56°). I-V and stability tests of photo-electrochemical cells were performed with TiO2 and TiO2/CdSe film electrodes (under light of illumination intensity 80 mW/cm2) in lithium iodide as an electrolyte using two-electrode system.  相似文献   

11.
TiO2/Ag and TiO2/Au nanocrystalline multilayer thin films were deposited using pulsed laser deposition technique. Investigations have been made to understand the influence of different phases of TiO2 on the surface plasmon characteristics of the thin films. Rutile phase of TiO2 is found to be a good host matrix for both Ag and Au nanoparticles. Compared to silver, gold nanoparticles are found to enhance the photocatalytic activity of the films by exhibiting a broad and intense absorption with a significant shift to longer wavelength region.  相似文献   

12.
We have built TiO2 Dye sensitized solar cells (DSSCs) that combined flexible TiO2 photoanodes coated on ITO/PET substrates with a gel electrolyte based on PVDF-HFP-SiO2 films. Titanium isopropoxide (TiP4) was used as additive to TiO2 nanoparticles for increasing power conversion efficiency in Dye sensitized solar cell electrodes prepared at low-temperature (130 °C). An efficiency ηAM1.5G = 3.55% on ITO/PET substrates is obtained at 48 mW/cm2 illumination with a standard liquid electrolyte based on methoxypropionitrile. Among several solvents forming gels with PVDF-HFP-SiO2, N-methyl (pyrrolidone) (NMP) was found to enable the most stable devices. A power conversion efficiency ηAM1.5G = 2% was obtained under 10 mW/cm2 with flexible TiO2-ITO-PET photoanodes and the PVDF-HFP-SiO2 + NMP gel electrolyte.  相似文献   

13.
Three different types of nanocrystalline, N-doped TiO2 electrodes were synthesized using several nitrogen dopants through wet methods. The obtained nanocrystalline, N-doped TiO2 electrodes possessed different crystallite sizes, surface areas, and N-doping amounts. Characterizations were performed to reveal the nitrogen-doping processes for the wet methods using ammonia, urea, and triethylamine as the nitrogen dopants. Additionally, a high conversion efficiency of 8.32% was achieved by the dye-sensitized solar cells, based on the N-doped TiO2 electrodes. For instance, in comparison with the commercial P25 (5.76%) and pure anatase TiO2 electrodes (7.14%), significant improvements (44% and 17%, respectively) in the efficiencies were obtained. The findings also indicated that the ammonia nitrogen dopant was more efficient than other two nitrogen dopants. The electron transports, electron lifetimes, and charge recombination in the dye-sensitized N-doped TiO2 solar cells also differed from those in the pure TiO2-based dye-sensitized solar cells (DSCs). Specifically, an enhanced photocurrent of ca. 36% in N-doped DSCs resulted from the synergistic effects of the high dye uptake and the efficient electron transport. Moreover, the relationship between charge and voltage revealed that less charge was needed to get a high open-circuit voltage in the N-doping films.  相似文献   

14.
Transparent nanocrystalline TiO2 thin films with high photocatalytic activity and photo-induced wettability were successfully deposited on a glass slide. Crystal phase transformations and particle size of TiO2 were investigated. Structural and morphological properties of the films were investigated. The photocatalytic activity of the TiO2 films was evaluated. It is found that the photocatalytic activity of TiO2 thin films is significantly decreased by increasing the annealing temperature, which results in a decrease in BET surface area and an increase in crystal size. In addition, increasing film thickness within a certain range significantly improves the photocatalytic activity without causing crack formation of the TiO2 films. Photocatalytic oxidation and photo-induced wettability conversion on the films were investigated. It is found that photo-induced hydrophilic conversion is observed even on the samples annealed at high temperature. The best photo-generated activities are obtained by optimization of dip-coating cycles and annealing temperatures.  相似文献   

15.
We demonstrate that spectral selective photocatalytic multilayer films can be tailored such that they can harness the full solar spectrum for enhanced photocatalytic gas-phase oxidation of acetaldehyde. Thin films of anatase TiO2 were deposited on a thin solar absorber TiAlN film to fabricate bilayer TiO2/TiAlN films by dc magnetron sputtering on aluminium substrates. The structural and optical properties of the films were characterized by X-ray diffraction and Raman spectroscopy. The reaction rate and quantum yield for acetaldehyde removal was measured and an almost tenfold enhancement of the quantum yield was observed for the TiO2/TiAlN films compared with the single TiO2 film, on par with enhancements achieved with new heterojunction photocatalysts. The results were interpreted by a temperature-induced change of the reaction kinetics. Absorption of simulated solar light illumination resulted in a temperature increase of the TIAlN film that was estimated to be at most 126 K. We show that a concomitant temperature increase of the top layer TiO2 by 100 K shifts the water gas-surface equilibrium from multilayer to submonolayer coverage. We propose that this is the main reason for the observed enhancement of the photocatalytic activity, whereby gas phase molecules may come in direct contact with free surface sites instead of having to diffuse through a thin water film. The implications of the results for judicious control of temperature and relative humidity for efficient gas-phase photocatalysis and exploitation of selective solar absorbing films are discussed.  相似文献   

16.
Herein, enhancement of dye‐sensitized solar cell (DSC) performance is reported by combining the merits of the dye loading of TiO2 nanoparticles and light scattering, straight carrier transport path, and efficient electron collection efficiency of TiO2 cubes. We fabricate DSC devices with various arrangement styles and compositions of the electrodes in the forms of monolayer and double layer films. For this purpose, the solvothermal synthesized TiO2 cubic particles (100‐600 nm) are employed as the scattering layer, whereas TiO2 nanoparticles (15‐30 nm) synthesized via a combination of solvothermal and sol‐gel routes are used as the active layer of devices. We improve the photovoltaic characteristics of DSCs by two mechanisms. First, the light harvesting of DSC devices made of nanoparticles is improved by controlling the thickness of monolayer films, reaching the highest efficiency of 7.0%. Second, the light scattering and electron collection efficiency are enhanced by controlling the composition of double layer films composed of mixtures of TiO2 nanoparticles and cubes, obtaining the maximum efficiency of 8.21%. The enhancements are attributed to balance between charge transfer resistance and charge recombination of photo‐generated electrons as well as dye loading and light scattering.  相似文献   

17.
In order to possess the merits of both building blocks, i.e. the rapid interfacial electron transport of TiO2-B narrow nanobelts (NBs) and the high surface area of TiO2 nanoparticles (NPs), the TiO2-B NBs and TiO2 NPs composites photoelectrodes were prepared with different weight ratios. The dye-sensitized solar cell prototypes were fabricated based on the composite photoelectrodes and the photoelectrical properties have been systematically studied. Although the amount of adsorption dye of composite solar cells decreased, the composite cells could obtain higher power conversion efficiency compared to pure TiO2 NP solar cell by rational tuning the weight ratio of TiO2-B NBs and TiO2 NPs, which was due to the faster electron transfer rate. The dye adsorption amount and interfacial electron transport, which together determined the overall photoelectrical conversion efficiency, were investigated by the UV–vis spectra, the electrochemical impedance spectra (EIS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS).  相似文献   

18.
Preparation of crack-free thin films of interconnected and non-agglomerated TiO2 nanoparticles on electronically conducting fluorine doped tin oxide surfaces is instrumental in designing and developing transparent dye-sensitized solar cells (DSCs). A novel technique called “Atomized Spray Pyrolysis” (ASP) has been designed and developed to achieve such perfectly transparent thin films. Optical transmittance of TiO2 films produced on FTO surface by this ASP method has been compared with those obtained by doctor-blading and by hand spray methods and found that the atomized spray pyrolysis technique give films with high transparency. Dye adsorption per gram of TiO2 is 2.16 times higher in the sample produced by the ASP method when compared to the film produced by the hand spray method and is 1.60 times higher than that produced by the doctor-blading method using a commercially available TiO2 nanocrystalline paste. SEM studies show the presence of interconnected discrete particles in the film produced by the ASP method. The fill factor (ff) remains almost constant for the cells with thickness from 6 μm to 13 μm but the highest photovoltage and photocurrent were found in ∼10 μm film based DSC which gave 8.2% conversion efficiency at AM 1.5 irradiation for cells of 0.25 cm2 active area.  相似文献   

19.
The formation of self-organized TiO2 nanotube array films by electrochemical anodizing titanium foils was investigated in a developed organic–inorganic mixed electrolyte. It was found that the structure and morphology of the TiO2 nanotube layer were greatly dependent upon the electrolyte composition, anodizing potential and time. Under the optimized electrolyte composition and electrochemical conditions, a controllable, well-ordered TiO2 nanotube array layer could be fabricated in a short time. The diameters of the as-prepared TiO2 nanotubes could be adjusted from 20 to 150 nm, and the thickness could be adjusted from a few hundred nanometers to several micrometers. The photoresponse and the photocatalytic activity of the highly ordered TiO2 nanotube array films were also examined. The nanotube array film with a thickness of about 2.5 μm had the highest incident photon to photocurrent conversion efficiency (IPCE) (34.3%) at the 350 nm wavelength, and had better charge transfer ability under UV light illumination. The photocatalytic experimental results indicated that the 450 °C annealing samples have the highest photodegradation efficiency for methyl orange pollutant.  相似文献   

20.
A micro-porous composite polymer electrolyte (MCPE) was prepared in situ by adding TiO2 nanoparticles from the hydrolysis of titanium tetrabutoxide to a solution of poly(vinylidenefluoride-co-hexafluoropropylene) [P(VDF-HFP)] copolymer. The prepared microporous polymer films (MCPFs) were characterized by scanning electronic microscopy, X-ray diffraction, thermogravimetric analysis, FT-IR and electrochemical interface resistance. After the addition of TiO2 nanoparticles the polarity of CF2 groups in the polymer chains and the crystallinity of the MCPFs decreased. When the composite polymer film contained 8.5 wt% of TiO2 nanoparticles the MCPE exhibited excellent electrochemical properties such as high ionic conductivity, up to 2.40 × 10−3 S cm−1 at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号