首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lead dioxide (PbO2) thin films were prepared on Ti/SnO2 substrates by means of electrodeposition method. Galvanostatic technique was applied in PbO2 film formation process, and the effect of deposition current on morphology and crystalline form of the PbO2 thin films was studied by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The energy storage capacity of the prepared PbO2 electrode was investigated by means of cyclic voltammetry (CV) and charge/discharge cycles, and a rough surface structure PbO2 film was selected as positive electrode in the construction of PbO2/AC hybrid capacitor in a 1.28 g cm−3 H2SO4 solution. The electrochemical performance was determined by charge/discharge tests and electrochemical impedance spectroscopy (EIS). The results showed that the PbO2/AC hybrid capacitor exhibited high capacitance, good cycling stability and long cycle life. In the voltage range of 1.8-0.8 V during discharge process, considering the weight of all components of the hybrid capacitor, including the two electrodes, current collectors, H2SO4 electrolyte and separator, the specific energy and power of the device were 11.7 Wh kg−1 and 22 W kg−1 at 0.75 mA cm−2, and 7.8 Wh kg−1 and 258 W kg−1 at 10 mA cm−2 discharge currents, respectively. The capacity retains 83% of its initial value after 3000 deep cycles at the 4 C rate of charge/discharge.  相似文献   

2.
Polythiophene (PTh) has been synthesized by chemical oxidative polymerization and used as an active cathode material in lithium batteries. The lithium batteries are characterized by cyclic voltammetry (CV), galvanostatic charge/discharge cycling and electrochemical impedance spectroscopic studies (EIS). The lithium battery with the PTh cathode exhibits a discharge voltage of 3.7 V compared to Li+/Li and excellent electrochemical performance. PTh can provide large discharge capacities above 50 mA h g−1 and good cycle stability at a high current density 900 mA g−1. After 500 cycles, the discharge capacity is maintained at 50.6 mA h g−1. PTh is a promising candidate for high-voltage power sources with excellent electrochemical performance.  相似文献   

3.
An electro-deposition method was used for the preparation of nano-structured lead dioxide. The lead dioxide films prepared were used as positive electrodes of lead acid batteries. Different parameters such as pulse time (ton), pulse height, and relaxation time (toff) were optimized to obtain higher capacity. Depend on the pulse conditions, a range of different morphologies of various porosities and connectivity was obtained. The resulting batteries were discharged to a cut off voltage of 1.75 V by a pulsed current method. The energy storage ability of the prepared lead acid batteries shows a close relation with the morphology of cathode materials. Maximum capacity was observed when pulse and relaxation time was equal to 0.1 and 5 s, respectively, at a current density of 25 mA cm−2. A change in morphology of lead dioxide from aggregated globular structure to nanofiber was occurred. It was found that the high surface area as well as high connectivity between particles resulted in increased discharge capacity. Analysis of electrochemical impedance spectroscopy (EIS) data revealed that the charge transfer resistance is decreased by a change in morphology from bulk globular to nanofiber as the energy storage test showed. The time dependence of impedance behavior of a sample prepared at ton = 0.1 s and toff = 5 s at 25 mA cm−2 was investigated and the results are discussed.  相似文献   

4.
To achieve a high-energy-density lithium electrode, high-density LiFePO4/C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO4 as a precursor, glucose as a C source, and Li2CO3 as a Li source, in a pipe furnace under an atmosphere of 5% H2-95% N2. The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO4/carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO4/carbon composite powder with a carbon content of 7% reached 1.80 g m−3. The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g−1, respectively, with a volume capacity of 300.6 mAh cm−3, at a 0.1C rate. At a rate of 5C, the LiFePO4/carbon composite shows a high discharge capacity of 98.3 mAh g−1 and a volume capacity of 176.94 mAh cm−3.  相似文献   

5.
The electrochemical oxidation of Ibuprofen (Ibu) was performed using a Ti/Pt/PbO2 electrode as the anode, prepared according to literature, and a boron doped diamond (BDD) electrode, commercially available at Adamant Technologies. Tests were performed with model solutions of Ibu, with concentrations ranging from 0.22 to 1.75 mM for the Ti/Pt/PbO2 electrode and 1.75 mM for the BDD electrode, using 0.035 M Na2SO4 as the electrolyte, in a batch cell, at different current densities (10, 20 and 30 mA cm−2). Absorbance measurements, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) tests were conducted for all samples. The results have shown a very good degradation of Ibu, with COD removals between 60 and 95% and TOC removals varying from 48 to 92%, in 6 h experiments, with higher values obtained with the BDD electrode. General Current Efficiency and Mineralization Current Efficiency, determined for both electrodes, show a similar behaviour for 20 mA cm−2 but a very different one at 30 mA cm−2. The combustion efficiency was also determined for both anodes, and found to be slightly higher with BDD at lower current density and equal to 100% for both anodes at 30 mA cm−2.  相似文献   

6.
Three sets of electrodes, namely Pt electroplated Ti (PET) and diffusion annealed PET (DAPET) of plating thickness 3, 5, 7 and 10 μm and thermochemically glazed mixed oxide coated titanium anode (MOCTA-G) were evaluated for their performance, with a view to optimizing the current density conditions for maximum efficiency during the electrolytic destruction of nitric acid. In the acid killing by electro-reduction process, concentration of nitric acid in the high level waste (HLW) from the spent nuclear fuel reprocessing plant was brought down from about 4 to 0.5 M in order to reduce the amount of HLW by subsequent evaporation and to minimise the corrosion in waste tanks during storage of the concentrated waste solution. The electrochemical reduction of 4 and 8 M nitric acid to near neutral conditions was carried out with the above-said anodes and Ti cathode at various cathodic current densities ranging from 10 to 80 mA cm−2. At current densities below 15 mA cm−2 MOCTA-G electrode worked satisfactorily, whereas PET and DAPET electrodes could withstand and function well at much higher cathodic current densities (up to 80 mA cm−2). The life assessment of a 3 μm thick PET electrode at a cathodic current density of 60 mA cm−2 in 8 M HNO3 for a period of 110 h showed no failure. Phase identification of the plated electrodes was done by XRD measurements and their surface morphology was investigated by SEM.  相似文献   

7.
Under optimized synthesis conditions, very large area uniform SnO2 nanofibers consisting of orderly bonded nanoparticles have been obtained for the first time by thermal pyrolysis and oxidization of electrospun tin(II)2-ethylhexanoate/polyacrylonitrile (PAN) polymer nanofibers in air. The structure and morphology were elaborated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The SnO2 nanofibers delivered a reversible capacity of 446 mAh g−1 after 50 cycles at the 100 mA g−1 rate and excellent rate capability of 477.7 mAh g−1 at 10.0 C. Owing to the improved electrochemical performance, this electrospun SnO2 nanofiber could be one of the most promising candidate anode materials for the lithium-ion battery.  相似文献   

8.
A numerical simulation of an enzyme-catalyzed oxygen cathode is presented and applied to the analysis of transport limitations in operating electrodes, with the goal of predicting the limits of obtainable cathode current density. Based on macrohomogeneous and thin-film theories, and accounting for dual-substrate enzyme kinetics, the one-dimensional model predicts a maximum current density of about 9.2 mA cm−2 at 0.6 V (SHE) for a 300 μm thick electrode operating oxygen-saturated pH 5 buffer at 37 °C and relying on diffusion of dissolved oxygen alone. However, by introducing gas-phase diffusive transport, or alternatively a convective, flow-through approach, the model predicts that electrodes of identical thickness may provide current densities up to 60 mA cm−2 in air and exceeding 100 mA cm−2 in pure O2. Such performance would move enzyme electrodes closer to practical implementation in implantable power devices and other low-temperature fuel cells such as direct methanol fuel cells.  相似文献   

9.
Liwen Ji 《Electrochimica acta》2010,55(5):1605-7699
Copper-loaded carbon nanofibers are fabricated by thermally treating electrospun Cu(CH3COO)2/polyacrylonitrile nanofibers and utilized as an energy-storage material for rechargeable lithium-ion batteries. These composite nanofibers deliver more than 400 mA g−1 reversible capacities at 50 and 100 mA g−1 current densities and also maintain clear fibrous morphology and good structural integrity after 50 charge/discharge cycles. The relatively high capacity and good cycling performance of these composite nanofibers, stemmed from the integrated combination of metallic copper and disordered carbon as well as their unique textures and surface properties, make them a promising electrode candidate for next-generation lithium-ion batteries.  相似文献   

10.
The Mn(II)/Mn(III) couple has been recognized as a potential anode for redox flow batteries to take the place of the V(IV)/V(V) in all-vanadium redox battery (VRB) and the Br2/Br in sodium polysulfide/bromine (PSB) because it has higher standard electrode potential. In this study, the electrochemical behavior of the Mn(II)/Mn(III) couple on carbon felt and spectral pure graphite were investigated by cyclic voltammetry, steady polarization curve, electrochemical impedance spectroscopy, transient potential-step experiment, X-ray diffraction and charge-discharge experiments. Results show that the Mn(III) disproportionation reaction phenomena is obvious on the carbon felt electrode while it is weak on the graphite electrode owing to its fewer active sites. The reaction mechanism on carbon felt was discussed in detail. The reversibility of Mn(II)/Mn(III) is best when the sulfuric acid concentration is 5 M on the graphite electrode. Performance of a RFB employing Mn(II)/Mn(III) couple as anolyte active species and V(III)/V(II) as catholyte ones was evaluated with constant-current charge-discharge tests. The average columbic efficiency is 69.4% and the voltage efficiency is 90.4% at a current density of 20 mA cm−2. The whole energy efficiency is 62.7% close to that of the all-vanadium battery and the average discharge voltage is about 14% higher than that of an all-vanadium battery. The preliminary exploration shows that the Mn(II)/Mn(III) couple is electrochemically promising for redox flow battery.  相似文献   

11.
Nanotubes were coated on the surface of active LiCoO2 particles using electrostatic heterocoagulation to enhance the electrochemical properties of a Li-ion battery. Only 0.5 wt% of multiwalled carbon nanotubes (MWCNTs) was added as a conducting agent into the LiCoO2 cathode, which had a density of 4.0 g cm−3. We found that our electrode that was prepared using heterocoagulation with 0.5 wt% of thin MWCNTs maintained a volumetric capacitance of 403 mAh cm−1 after 40 cycles from the initial 624 mAh cm−1, compared with previous result of 310 mAh cm−1 obtained from simple mixing with 3 wt% MWCNTs. The high volumetric capacity with smaller swelling using less amount of MWCNTs was attributed to the self-assembled nanotube network formed between active particles during coagulation, which was maintained with volume expansion during cycle testing.  相似文献   

12.
The nature of Li-Si alloy phases that are generated in electrochemical lithiation is examined as a function of temperature. The electrochemical lithiation is performed at 0.0 V (vs. Li/Li+) by short-circuiting an amorphous Si thin-film electrode with a Li metal counter electrode. At 25-85 °C, the well-known Li15Si4 phase (theoretical specific capacity = 3580 mA h g−1) forms. At 100-120 °C, however, Li21Si5 (4008 mA h g−1) that is known to be the most Li-rich phase in Li-Si system is generated. The crystallization into Li21Si5 is, however, so kinetically slow that it does not appear in the transient cycling experiment. The Li21Si5 phase is converted to amorphous Si upon de-lithiation, but the restoration back to the initial phase is only observed at 100-120 °C after a prolonged lithiation at 0.0 V. The cycleability of this phase is poor due to a successive Li trapping inside the Si matrix, which is caused by the formation of electrically isolated Si islands.  相似文献   

13.
The chemical and electrochemical properties of Li5La3Ta2O12 (LLTa) solid electrolyte were extensively investigated to determine its compatibility with an all-solid-state battery. A well-sintered LLTa pellet with a garnet-like structure was obtained after sintering at 1200 °C for 24 h. Li ion conductivity of the LLTa pellet was estimated to be 1.3×10−4 S cm−1. The LLTa pellet was stable when in contact with lithium metal. This indicates that Li metal anode, which is the best anode material, can be applied with the LLTa system. A full cell composed of LiCoO2/LLTa/Li configuration was constructed, and its electrochemical properties were tested. In the resulting cyclic voltammogram, a clear redox couple of LiCoO2 was observed, implying that the all-solid-state battery with the Li metal anode was successfully operated at room temperature. The redox peaks of the battery were still observed even after one year of storage in an Ar-filled glove-box. It can be concluded that the LLTa electrolyte is a promising candidate for the all-solid-state battery because of its relatively high Li ion conductivity and good stability when in contact with Li metal anode and LiCoO2 cathode.  相似文献   

14.
Pd-Co alloy has been recently proposed as a catalyst for the cathode of direct methanol fuel cells with both excellent oxygen reduction activity and methanol tolerance, hence electrodeposition of this alloy is an attractive approach for synthesizing porous metal electrodes with high methanol tolerance in direct methanol fuel cells. In this study, we electrodeposited two types of Pd-Co films onto Au substrates by applying different current density (−10 or −200 mA cm−2); and then characterized them in terms of morphology, composition, crystal structure, and catalytic activity. Pd-Co deposited at −10 mA cm−2 was smooth and possessed smaller particles (ca. 10 nm), while that at −200 mA cm−2 was dendritic (or rough) and possessed larger particles (ca. 50 nm). Both the Pd-Co alloys were found to be almost the same structure, i.e. a solid solution of ca. Pd7Co3 with Pd-skin, and also confirmed to possess comparable activity in oxygen reduction to Pt (potential difference at 1.0 μA cm−2 was 0.05 V). As for methanol tolerance, cell-voltage was not influenced by addition of 1 mol dm−3 methanol to the oxidant solution. Our approach provides fundamental technique for synthesizing Pd-Co porous metal electrodes by electrodeposition.  相似文献   

15.
La(1−x)SrxFeO3 (x = 0.2,0.4) powders were prepared by a stearic acid combustion method, and their phase structure and electrochemical properties were investigated systematically. X-ray diffraction (XRD) analysis shows that La(1−x)SrxFeO3 perovskite-type oxides consist of single-phase orthorhombic structure (x = 0.2) and rhombohedral one (x = 0.4), respectively. The electrochemical test shows that the reaction at La(1−x)SrxFeO3 oxide electrodes are reversible. The discharge capacities of La(1−x)SrxFeO3 oxide electrodes increase as the temperature rises. With the increase of the temperature from 298 K to 333 K, their initial discharge capacity mounts up from 324.4 mA h g−1 to 543.0 mA h g−1 (when x = 0.2) and from 147.0 mA h g−1 to 501.5 mA h g−1 (when x = 0.4) at the current density of 31.25 mA g−1, respectively. After 20 charge-discharge cycles, they still remain perovskite-type structure. Being similar to the relationship between the discharge capacity and the temperature, the electrochemical kinetic analysis indicates that the exchange current density and proton diffusion coefficient of La(1−x)SrxFeO3 oxide electrodes increase with the increase of the temperature. Compared with La0.8Sr0.2FeO3, La0.6Sr0.4FeO3 electrode is a more promising candidate for electrochemical hydrogen storage because of its higher cycle capacity at various temperatures.  相似文献   

16.
The performances of the Ti-Pt/β-PbO2 and boron-doped diamond (BDD) electrodes in the electrooxidation of simulated wastewaters containing 85 mg L−1 of the Reactive Orange 16 dye were investigated using a filter-press reactor. The electrolyses were carried out at the flow rate of 7 L min−1, at different current densities (10-70 mA cm−2), and in the absence or presence of chloride ions (10-70 mM NaCl). In the absence of NaCl, total decolourisation of the simulated dye wastewater was attained independently of the electrode used. However, the performance of the BDD electrode was better than that of the Ti-Pt/β-PbO2 electrode; the total decolourisations were achieved by applying only 1.0 A h L−1 and 2.0 A h L−1, respectively. In the presence of NaCl, with the electrogeneration of active chlorine, the times needed for total colour removal were markedly decreased; the addition of 50 mM Cl or 35 mM Cl (for Ti-Pt/β-PbO2 or BDD, respectively) to the supporting electrolyte led to a 90% decrease of these times (at 50 mA cm−2). On the other hand, total mineralization of the dye in the presence of NaCl was attained only when using the BDD electrode (for 1.0 A h L−1); for the Ti-Pt/β-PbO2 electrode, a maximum mineralization of 85% was attained (for 2.0 A h L−1). For total decolourisation of the simulated dye wastewater, the energy consumption per unit mass of dye oxidized was only 4.4 kWh kg−1 or 1.9 kWh kg−1 using the Ti-Pt/β-PbO2 or BDD electrode, respectively. Clearly the BDD electrode proved to be the best anode for the electrooxidative degradation of the dye, either in the presence or absence of chloride ions.  相似文献   

17.
A kind of composite cathode, La0.58Sr0.4Co0.2Fe0.8O3−δ-Ce0.8Sm0.2O2−δ (LSCF-SDC), was presented in this paper. The electrochemical performance of the cathode on the electrolyte of SDC and YSZ coated with a thin SDC (YSZ/SDC) layer was studied by electrochemical impedance spectroscopy (EIS) and cathodic polarization techniques for their potential utilization in the intermediate temperature solid oxide fuel cell (IT-SOFC). Also studied was the relationship between the electro-catalytic characteristics and the electrode microstructure. Results showed that the LSCF-SDC composite electrode performed better on the SDC electrolyte than on the electrolyte of YSZ/SDC. The polarization resistance, Rp, of the cathode on the SDC electrolyte was 0.23 Ω cm2 at 700 °C and 0.067 Ω cm2 at 750 °C, much lower than the corresponding Rp of the same cathode on the YSZ/SDC electrolyte. At 750 °C, the cathodic overpotential of the composite cathode on the SDC electrolyte was 99.7 mV at the current density of 1.0 A cm−2.  相似文献   

18.
We report on the use of the polyoxometalate acids of the series [PMo(12 − n)VnO40](3 + n)− (n = 0-3) as electrocatalysts in both the anode and the cathode of polymer-electrolyte membrane (PEM) fuel cells. The heteropolyacids were incorporated as catalysts in a commercial gas diffusion electrode based on Vulcan XC-72 carbon which strongly adsorbed a low loading of the catalyst, ca. 0.1 mg/cm2. The moderate activity observed was independent of the number of vanadium atoms in the polyoxometalate. In the anode the electrochemistry is dominated by the V3+/4+ couple. With a platinum reference wire in contact with the anode, polarization curves are obtained withVOC of 650 mV and current densities of 10 mA cm−2 at 100 mV at 80 °C. These catalysts showed an order of magnitude more activity on the cathode after moderate heat treatment than on the anode,VOC = 750 mV, current densities of 140 mA cm−2 at 100 mV. The temperature dependence of the catalysts was also investigated and showed increasing current densities could be achieved on the anode up to 139 °C and the cathode to 100 °C showing the potential for these materials to work at elevated temperatures.  相似文献   

19.
The rapid thermal annealing (RTA) process was employed to obtain crystalline LiCoO2 thin films. XRD analyses of the LiCoO2 thin film show increased crystallinity with an increase in the RTA time. The Auger electron spectroscopic analysis of the LiCoO2 film strongly suggests that the RTA process is more advantageous to obtain a stable inter layer between the substrate and the deposited film and between each deposited layer than the conventional annealing process. All-solid-state thin film cells composed of Li/lithium phosphorous oxynitride (Lipon)/LiCoO2 systems were fabricated using the LiCoO2 cathode treated with RTA. The optimum condition of RTA would be 900 s at 650 °C, which exhibited a good rate capability for high power applications. Two cells were connected in parallel to obtain a higher discharge current, and they showed a specific capacity of 38.4 μAh cm−2 μm−1 even at a 25C rate (current density: 7.96 mA cm−2).  相似文献   

20.
The electrochemical oxidation of chloranilic acid (CAA) has been studied in acidic media at Pb/PbO2, boron-doped diamond (Si/BDD) and Ti/IrO2 electrodes by bulk electrolysis experiments under galvanostatic control. The obtained results have clearly shown that the electrode material is an important parameter for the optimization of such processes, deciding of their mechanism and of the oxidation products. It has been observed that the oxidation of CAA generates several intermediates eventually leading to its complete mineralization. Different current efficiencies were obtained at Pb/PbO2 and BDD, depending on the applied current density in the range from 6.3 to 50 mA cm−2. Also the effect of the temperature on Pb/PbO2 and BDD electrodes was studied.UV spectrometric measurements were carried out at all anodic materials, with applied current density of 25 and 50 mA cm−2. These results showed a faster CAA elimination at the BDD electrode. Finally, a mechanism for the electrochemical oxidation of CAA has been proposed according to the results obtained with the HPLC technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号