首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A numerical analysis of cracks emanating from a square hole in a rectangular plate in tension is performed using a hybrid displacement discontinuity method (a boundary element method). Detailed solutions of the stress intensity factors (SIFs) of the plane elastic crack problem are given, which can reveal the effect of geometric parameters of the cracked body on the SIFs. By comparing the calculated SIFs of the plane elastic crack problem with those of the centre crack in a rectangular plate in tension, in addition, an amplifying effect of the square hole on the SIFs is found. The numerical results reported here also prove that the boundary element method is simple, yet accurate, for calculating the SIFs of complex crack problems in finite plate.  相似文献   

2.
By using the displacement discontinuity method with crack-tip elements (a boundary element method) proposed recently by the author, this note presents the stress intensity factors (SIFs) of a rectangular tensile plate with single edge crack. Further this note studies the SIFs of crack emanating from an edge half-circular hole. By comparing the calculated SIFs of the single edge half-circular-hole crack with those of the single edge crack, a shielding effect of the half-circular hole on the SIFs of the single edge crack is discussed. It is found that the boundary element method is simple, yet accurate for calculating the SIFs of complex crack problems in finite plate.  相似文献   

3.
This paper deals with such a kind of surface crack problem with a same depth (called a liked‐plane crack problem for short). Based on the previous investigations on an internal rectangular crack and a surface rectangular crack in an infinite solid in tension and the hybrid displacement discontinuity method, a numerical approach for the liked‐plane crack problem is presented. Numerical examples are given to illustrate the numerical approach is simple, yet accurate for calculating the stress intensity factors (SIFs) of the liked‐plane crack problem. Specifically, SIFs of a pair of cracks emanating from a surface square hole in an infinite body in tension are investigated in detail.  相似文献   

4.
This note deals with the stress intensity factors (SIFs) of cracks emanating from a rhombus hole in a rectangular plate subjected to internal pressure by means of the displacement discontinuity method with crack-tip elements (a boundary element method) proposed recently by the author. Moreover, an empirical formula of the SIFs of the crack problem is presented and examined. It is found that the empirical formula is very accurate for evaluating the SIFs of the crack problem.  相似文献   

5.
An empirical formula of the SIFs of cracks emanating from a circular hole in a rectangular plate in tension is presented and examined. It is found that the empirical formula is simple, yet accurate for evaluating the SIFs of the crack problem.  相似文献   

6.
This note concerns with stress intensity factors of cracks emanating from a square hole in rectangular plate under biaxial loads by means of the boundary element method which consists of the non-singular displacement discontinuity element presented by Crouch and Starfied and the crack tip displacement discontinuity elements proposed by the author. In the boundary element implementation the left or the right crack tip displacement discontinuity element is placed locally at corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundary. The present numerical results illustrate that the present approach is very effective and accurate for calculating stress intensity factors of complicated cracks in a finite plate and can reveal the effect of the biaxial load and the cracked body geometry on stress intensity factors.  相似文献   

7.
This paper concerns stress intensity factors of cracks emanating from a triangular or square hole in an infinite plate subjected to internal pressure calculated by means of a boundary element method, which consists of constant displacement discontinuity element presented by Crouch and Starfied and crack tip displacement discontinuity elements proposed by the author. In the boundary element implementation the left or the right crack tip displacement discontinuity element is placed locally at corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Numerical examples are included to show that the method is very efficient and accurate for calculating stress intensity factors of plane elasticity crack problems. Specifically, the numerical results of stress intensity factors of cracks emanating from a triangular or square hole in an infinite plate subjected to internal pressure are given.  相似文献   

8.
This paper is concerned with stress intensity factors for cracks emanating from a triangular or square hole under biaxial loads by means of a new boundary element method. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfied and the crack‐tip displacement discontinuity elements proposed by the author. In the boundary element implementation, the left or the right crack‐tip displacement discontinuity element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The method is called a Hybrid Displacement Discontinuity Method (HDDM). Numerical examples are included to show that the method is very efficient and accurate for calculating stress intensity factors for plane elastic crack problems. In addition, the present numerical results can reveal the effect of the biaxial loads on stress intensity factors.  相似文献   

9.
This paper deals with the rectangular tensile sheet with symmetric double edge notch cracks. Such a crack problem is called an edge notch crack problem for short. By using a hybrid displacement discontinuity method (a boundary element method), two edge notch models are analyzed in detail. By changing the geometrical forms and parameters of the edge notch, and by comparing the stress intensity factors (SIFs) of the edge notch crack problem with those of the double edge cracked plate tension specimen (DECT), which is a model frequently used in fracture mechanics, the effect of the geometrical forms and parameters of the edge notch on the SIFs of the DECT specimen, is revealed. Some geometric characterestic parameters are introduced here, which are used to formulate the notch length and the branch crack length, which are to be determined in mechanical machining of the DECT specimen So we can say that the geometric characterestic parameters and the formulae used to determine the notch length and the branch crack length presented in this paper perhaps have some guidance role for mechanical machining of the DECT specimen.  相似文献   

10.
The boundary element method is employed to obtain T-stress solutions for cracks emanating from a circular hole in finite rectangular plates. Numerical values of the T-stress are obtained using the M-contour integral approach. A range of crack lengths are analyzed for two hole sizes, and the cases of a single crack and double-cracks emanating from the hole in the plate under both uniform remote tension and simple bending are considered. For completeness, stress intensity factor solutions are also presented. These results will be useful for failure assessments using two-parameter linear elastic fracture mechanics.  相似文献   

11.
This paper presents a boundary element analysis of linear elastic fracture mechanics in three‐dimensional cracks of anisotropic solids. The method is a single‐domain based, thus it can model the solids with multiple interacting cracks or damage. In addition, the method can apply the fracture analysis in both bounded and unbounded anisotropic media and the stress intensity factors (SIFs) can be deduced directly from the boundary element solutions. The present boundary element formulation is based on a pair of boundary integral equations, namely, the displacement and traction boundary integral equations. While the former is collocated exclusively on the uncracked boundary, the latter is discretized only on one side of the crack surface. The displacement and/or traction are used as unknown variables on the uncracked boundary and the relative crack opening displacement (COD) (i.e. displacement discontinuity, or dislocation) is treated as a unknown quantity on the crack surface. This formulation possesses the advantages of both the traditional displacement boundary element method (BEM) and the displacement discontinuity (or dislocation) method, and thus eliminates the deficiency associated with the BEMs in modelling fracture behaviour of the solids. Special crack‐front elements are introduced to capture the crack‐tip behaviour. Numerical examples of stress intensity factors (SIFs) calculation are given for transversely isotropic orthotropic and anisotropic solids. For a penny‐shaped or a square‐shaped crack located in the plane of isotropy, the SIFs obtained with the present formulation are in very good agreement with existing closed‐form solutions and numerical results. For the crack not aligned with the plane of isotropy or in an anisotropic solid under remote pure tension, mixed mode fracture behavior occurs due to the material anisotropy and SIFs strongly depend on material anisotropy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
The time-harmonic behavior of cracked finite piezoelectric 2D solids of arbitrary shape is studied by the nonhypersingular traction boundary integral equation method (BIEM). Plane strain and generalized traction free boundary conditions along the crack are assumed. The system may be loaded at the external boundary by arbitrary mechanical or electrical loads. As numerical example a center cracked rectangular piezoelectric plate under time-harmonic tension and electrical displacement is investigated in detail. The accuracy of the proposed numerical algorithm is checked by comparison with available results obtained by other methods for special cases. Parametric studies revealing the sensitivity of the stress intensity factors (SIFs) on the frequency of the applied mechanical and electrical load, on its coupled and uncoupled character and on the piezoelectric properties of the material are presented.  相似文献   

13.
This paper presents a numerical prediction model of mixed‐mode crack fatigue growth in a plane elastic plate. It involves a formulations of fatigue growth of multiple crack tips under mixed‐mode loading and a displacement discontinuity method with crack‐tip elements (a boundary element method) proposed recently by Yan is extended to analyse the fatigue growth process of multiple crack tips. Due to an intrinsic feature of the boundary element method, a general growth problem of multiple cracks can be solved in a single‐region formulation. In the numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not necessary. Crack extension is conveniently modelled by adding new boundary elements on the incremental crack extension to the previous crack boundaries. At the same time, the element characters of some related elements are adjusted according to the manner in which the boundary element method is implemented. As an example, the present numerical approach is used to analyse the fatigue growth of a centre slant crack in a rectangular plate. The numerical results illustrate the validation of the numerical prediction model and can reveal the effect of the geometry of the cracked plate on the fatigue growth.  相似文献   

14.
An infinite quasi‐orthotropic plane with a cracked circular hole under tensile loading at infinity is studied analytically. To this end, complex variable theory of Muskhelishvili is used. In addition, to obtain analytical functions, a new conformal mapping is proposed and expanded to series expressions. Stress intensity factors (SIFs) for two unequal cracks emanating from a circular hole are obtained. To validate the analytical SIFs in a quasi‐orthotropic plane, the results are compared with FEM and the results of isotropic plane. The SIFs for small cracks in a quasi‐orthotropic and an isotropic plane are different, because of difference between stress concentrations in points which cracks emanate from the hole. However, the results of quasi‐orthotropic plane converge to isotropic plane for the large cracks. Therefore, the SIFs of the large cracks in a quasi‐orthotropic plane can be replaced by the results of the center crack with equivalent length in an isotropic plane.  相似文献   

15.
This article deals with the interaction between a cracked hole and a line crack under uniform heat flux. Using the principle of superposition, the original problem is converted into three particular cracked hole problems: the first one is the problem of the hole with an edge crack under uniform heat flux, the second and third ones are the problems of the hole under distributed temperature and edge dislocations, respectively, along the line crack surface. Singular integral equations satisfying adiabatic and traction free conditions on the crack surface are obtained for the solution of the second and third problems. The solution of the first problem, as well as the fundamental solutions of the second and third, is obtained by the complex variable method along with the rational mapping function approach. Stress intensity factors (SIFs) at all three crack tips are calculated. Interestingly, the results show that the interaction between the cracked hole and the line crack under uniform heat flux can lead to the vanishing of the SIFs at the hole edge crack tip. The fact has never been seen for the case of a cracked hole and a line crack under remote uniform tension.  相似文献   

16.
By applying the new boundary integral formulation proposed recently by Chau and Wang (1997) for two-dimensional elastic bodies containing cracks and holes, a new boundary element method for calculating the interaction between cracks and holes is presented in this paper. Singular interpolation functions of order r-1/2 (where r is the distance measured from the crack tip) are introduced for the discretization of the crack near the crack tips, such that stress singularity can be modeled appropriately. A nice feature for our implementation is that singular integrands involved at the element level are integrated analytically. For each of the hole boundaries, an additional unknown constant is introduced such that the displacement compatibility condition can be satisfied exactly by the complex boundary function H(t), which is a combination of the traction and displacement density. Another nice feature of the present formulation is that the stress intensity factors (both K_I and K_II) at crack tips are expressed in terms of the nodal unknown of H(t) exactly, and no extrapolation of numerical data is required. To demonstrate the accuracy of the present boundary element method, various crack problems are considered: (i) the Griffith crack problem, (ii) the interaction problem between a circular hole and a straight crack subject to both far field tension and compression, and (iii) the interaction problem between a circular hole and a kinked crack subject to far field uniaxial tension. Excellent agreement with existing results is observed for the first two problems and also for the last problem if the crack-hole interaction is negligible. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Finite element analysis (FEA) combined with the concepts of Linear Elastic fracture mechanics (LEFM) provides a practical and convenient means to study the fracture and crack growth of materials. A numerical analysis (FEM) of cracks was developed to derive the SIF for two different geometries, i.e., a rectangular plate with half circle-hole and central edge crack plate in tension loading conditions. The onset criterion of crack propagation is based on the stress intensity factor, which is the most important parameter that must be accurately estimated and facilitated by the singular element. Displacement extrapolation technique (DET) is employed, to obtain the stress intensity factors (SIFs) at crack tip. The fracture is modeled by the splitting node approach and the trajectory follows the successive linear extensions of each crack increment. These comprehensive tests are evaluated and compared with other relevant numerical and analytical results obtained by other researchers.  相似文献   

18.
Presented is an elementary solution, which is a particular solution of the circular plate containing one crack. The solution consists of two parts and satisfies the following conditions: (i) the first part corresponds to a pair of normal and tangential concentrated forces acting at a prescribed point on both edges of a single crack; (ii) the second part corresponds to some distributed tractions along both edges of the crack; (iii) the obtained elementary solution, i.e. the sum of the first and second parts, satisfies a traction free condition on the circular boundary. Using this elementary solution and taking some undetermined density of the elementary solution along each crack, a system of Fredholm integral equations of multiple crack problems can always be obtained. The multiple crack problems of an infinite plate containing a circular hole can be solved in a similar way. Several numerical examples are given in this paper.  相似文献   

19.
正交各向异性孔板的材料参数识别   总被引:1,自引:0,他引:1  
结合优化技术和边界元分析,针对正交各向异性孔板进行了材料参数的识别。材料参数识别的问题转化为极小化目标函数的问题,其中目标函数定义为测量位移与边界元计算相应的位移之差的平方和。采用Levenberg-Marquardt方法解极小化目标函数的问题,其中灵敏度的计算是基于离散的边界元代数矩阵方程对识别材料参数的求导。数值算例中,首先把边界元计算正交各向异性圆孔方板位移的结果与解析解进行比较,两者符合良好;然后采用本文提出的方法识别正交各向异性圆孔方板的材料参数。数值算例表明本文提出的方法是有效的。  相似文献   

20.
An efficient weight function technique using the indirect boundary integral method was presented for cracked circular discs. The crack opening displacement field was presented by a single layer whose kernel was a modified form of the fundamental solution in elastostatics. The application of a single-layer potential to the weight function method leads to a unique closed-form SIF (stress intensity factor) solution. The solution can be applied to a cracked circular discs with or without an internal hole or opening. For these crack geometries over a wide range of crack ratios, the SIF solution can be applied without any modification.

The calculation procedure of SIFs for the various cracked circular discs using only one analytical solution is very simple and straightforward. The information necessary in the analysis includes only two or three reference load cases. In most cases the SIF solution using two reference SIFs gives reasonably accurate results while the SIF solution with three reference load cases may be used to improve the solution accuracy of the crack configurations, with an internal opening or hole, compared with the solutions of the available literature.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号