首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, Pt nanowire networks supported on high surface area carbon (Pt NWNs/C) are synthesized as electrocatalysts for direct methanol fuel cells (DMFCs). The electrocatalytic behavior of Pt NWNs/C catalysts for the methanol and adlayer CO oxidation reactions is investigated and the results are compared with the Pt nanoparticles (NPs) supported on carbon (Pt NPs/C). The results indicate that Pt NWNs are characterized by interconnected nanoparticles with large number of grain boundaries, downshifted d-band center and reduced oxophilicity, which results in the enhanced surface mobility of oxygen-containing species such as COads and OHads. The enhanced surface mobility of COads and OHads in turn facilitates the removal of intermediate CO species during the methanol oxidation. The activity of the Pt NWNs/C electrocatalyst for the methanol oxidation reaction and electrooxidation of adsorbed CO is also evaluated by cyclic voltammetry, CO stripping, and kinetic analysis. The results show that Pt NWNs/C catalysts have a significantly higher electrocatalytic activity for the methanol oxidation reaction as compared to Pt NPs/C catalysts. The enhanced electrocatalytic activity of Pt NWNs/C catalysts is mainly due to the existence of large number of the grain boundaries of the interconnected nanoparticles of the unique Pt NWN structure.  相似文献   

2.
Pt nanoparticles are synthesized by the alcoholic reduction of H2PtCl6 in the presence of a polycation, poly(diallyldimethylammonium chloride) (PDDA). The size of the PDDA-Pt nanoparticle colloids is in the range of 2-4 nm, depending on the PDDA to Pt ratio in the solution. The PDDA-Pt nonoparticles can be self-assembled to the sulfonic acid group, SO3, at the Nafion membrane surface by the electrostatic interaction, forming a self-assembled monolayer (SAM). The study shows that such SAM reduced the methanol crossover and enhanced the power output of direct methanol fuel cells (DMFC) by as much as 34% as compared to the cell based on an un-modified Nafion membrane. In addition, PDDA-Pt nanoparticles synthesized with low PDDA/Pt ratios show considerable catalytic activity for the methanol oxidation reaction (MOR) in comparison to a commercial Pt/C catalyst. However, the electrocatalytic activity of PDDA-Pt nanoparticles decreased significantly with the increase in the PDDA/Pt molar ratio, indicating that the excess PDDA inhibits the MOR.  相似文献   

3.
The electrocatalysis of the oxygen reduction reaction on carbon supported Pt and Pt–Co (Pt/C and Pt–Co/C) alloy electrocatalysts was investigated in sulphuric acid (both in the absence and in the presence of methanol) and in direct methanol fuel cells (DMFCs). In pure sulphuric acid Pt–Co/C alloys showed improved specific activity towards the oxygen reduction compared to pure platinum. In the methanol containing electrolyte a higher methanol tolerance of the binary electrocatalysts than Pt/C was observed. The onset potential for methanol oxidation at Pt–Co/C was shifted to more positive potentials. Accordingly, Pt–Co/C electrocatalyts showed an improved performance as cathode materials in DMFCs.  相似文献   

4.
In-Su Park 《Electrochimica acta》2007,52(18):5599-5605
Pt-modified Au nanoparticles on carbon support were prepared and analyzed as electrocatalysts for methanol electro-oxidation. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and Pt-modified Au nanoparticles, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles (∼3.5 nm diameter), Au nanoparticles were supported spontaneously on the surface of carbon black in the aqueous solution. Then a nanoscaled Pt layer was deposited on the surface of carbon-supported Au nanoparticles by the chemical reduction. The structural information and electrocatalytic activities of the Pt-modified Au nanoparticles were confirmed by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and cyclic voltammetry (CV). The results indicate that carbon-supported Au nanoparticles were modified with the reduced Pt atoms selectively. The Pt-modified Au nanoparticles showed the higher electrocatalytic activity for methanol electro-oxidation reaction than the commercial one (Johnson-Matthey). The increased electrocatalytic activity might be attributed to the effective surface structure of Pt-modified Au nanoparticles, which have a high utilization of Pt for surface reaction of methanol electro-oxidation.  相似文献   

5.
Hollow core mesoporous shell (HCMS) carbon has been explored for the first time as a cathode catalyst support in direct methanol fuel cells (DMFCs). The HCMS carbon consisting of discrete spherical particles possesses unique structural characteristics including large specific surface area and mesoporous volume and well-developed interconnected void structure, which are highly desired for a cathode catalyst support in low temperature fuel cells. Significant enhancement in the electrocatalytic activity toward oxygen reduction reaction has been achieved by the HCMS carbon-supported Pt nanoparticles compared with carbon black Vulcan XC-72-supported ones in the DMFC. In addition, much higher power was delivered by the Pt/HCMS catalysts (i.e., corresponding to an enhancement of ca. 91–128% in power density compared with that of Pt/Vulcan), suggesting that HCMS carbon is a unique cathode catalyst support in direct methanol fuel cell.  相似文献   

6.
High performance of electrocatalysts for direct methanol fuel cells was demonstrated by three-dimensional (3D) graphene (GR) decorated with platinum (Pt)–gold (Au) alloy nanoparticles (3D-GR/PtAu). The 3D-GR/PtAu composite with a morphology like a crumpled paper ball was synthesized from a colloidal mixture of GR and Pt–Au alloy nanoparticles with aerosol spray drying. The 3D-GR/PtAu had a high specific surface area and electrochemical surface area of up to 238 and 325 m2/g(Pt), respectively, and the electrocatalytic applications of the 3D-GR/PtAu were examined through methanol oxidation reactions. The 3D-GR/PtAu had the highest electrocatalytic activity for methanol oxidation reactions compared with commercial Pt–carbon black and Pt-GR. The 3D-GR/PtAu was also highly sensitive electrocatalytic activity in the methanol oxidation reaction compared with the 2D-GR/Pt–Au. Furthermore, the electrocatalytic activity of the 3D-GR/PtAu had the highest performance among the catalysts containing Pt, Au, and GR for the methanol oxidation reactions. The increased electrocatalytic activity is attributed to the high specific surface area of the 3D formation and the effective surface structure of the Pt–Au alloy nanoparticles.  相似文献   

7.
Pt/C electrocatalysts were prepared from a solution of H2PtCl6 in ethylene glycol in the presence of XC-72 carbon by adding a small amount of sodium acetate as stabilizer. Repeated TEM images showed that the platinum nanoparticles were small and uniform in size and highly dispersed on XC-72 carbon supports when a small amount of sodium acetate solution was added to the synthesis solution. The Pt/C electrocatalysts exhibited very high electrocatalytic activity for liquid methanol oxidation. The effects of adding acetate on Pt particle size and size distribution are discussed. It is demonstrated that acetate can be used as a good stabilizer for preparing Pt/C catalyst with fine and uniform Pt particles.  相似文献   

8.
Palladium (Pd) catalysts containing nanosized metal oxides, tungsten oxide (WO3) and tin oxide (SnO2), supported on carbon black (Pd–MOx/C) were synthesized, and the effect of the metal oxide on the oxygen reduction reaction (ORR) in a direct methanol fuel cell (DMFC) was investigated. The SEM images showed that the Pd nanoparticles were highly dispersed on the carbon black, and the metal oxide particles were also distributed well. Pd/C and Pd–WO3/C catalysts as cathode materials for the ORR in DMFCs showed activity similar to or better than that of Pt/C, whereas Pd–SnO2/C showed no improvement in catalytic activity.  相似文献   

9.
X Yu  L Kuai  B Geng 《Nanoscale》2012,4(18):5738-5743
Pt-based nanocomposites have been of great research interest. In this paper, we design an efficient MO/rGO/Pt sandwich nanostructure as an anodic electrocatalyst for DMFCs with combination of the merits of rigid structure of metallic oxides (MOs) and excellent electronic conductivity of reduced oxidized graphene (rGO) as well as overcoming their shortcomings. In this case, the CeO(2)/rGO/Pt sandwich nanostructure is successfully fabricated through a facile hydrothermal approach in the presence of graphene oxide and CeO(2) nanoparticles. This structure has a unique building architecture where rGO wraps up the CeO(2) nanoparticles and Pt nanoparticles are homogeneously dispersed on the surface of rGO. This novel structure endows this material with great electrocatalytic performance in methanol oxidation: it reduces the overpotential of methanol oxidation significantly and its electrocatalytic activity and stability are much enhanced compared with Pt/rGO, CeO(2)/Pt and Pt/C catalysts. This work supplies a unique MO/rGO/Pt sandwich nanostructure as an efficient way to improve the electrocatalytic performance, which will surely shed some light on the exploration of some novel structures of electrocatalyst for DMFCs.  相似文献   

10.
The rapid development of flexible and portable electrochemical energy devices has promoted the demand for flexible and lightweight electrocatalysts. Here we report flexible high performance electrocatalysts based on PtCu alloy nanotube arrays on carbon fiber cloth (CFC) (PtCu ANTAs/CFC) for direct methanol fuel cell (DMFC). Compared with Pt NTAs/CFC and commercial Pt/C, the PtCu ANTAs/CFC electrocatalysts exhibit significantly improved electrocatalytic activity and durability. Furthermore, the PtCu ANTAs/CFC electrocatalysts show excellent flexibility and they can keep almost constant electrocatalytic performance under the different distorted states, such as normal, bending and twisting states. The improved performance of the flexible PtCu ANTAs/CFC electrocatalysts can be ascribed to unique ANTAs, synergistic effect between Pt and Cu, and porous structure of CFC. This work shows the significant progress of high‐performance Pt‐based flexible anodes for DMFCs. © 2016 American Institute of Chemical Engineers AIChE J, 62: 975–983, 2016  相似文献   

11.
The effect of the fabrication methods of the conventional hot-pressed membrane-electrode-assembly (hot-pressed MEA) and catalyst-coated membrane (CCM) on the utilization efficiency of Pt electrocatalysts, methanol crossover and performance of direct methanol fuel cells (DMFCs) is studied under the condition of the same Pt electrocatalysts loading. Cyclic voltammetric and electrochemical impedance studies showed that the cell with CCM exhibited significantly higher electrochemical surface area and lower electrode polarization resistance for the methanol oxidation reaction, in comparison to that with the hot-pressed MEA. Compared with the hot-pressed MEA, the methanol crossover of the cell with CCM is decreased by 55% and the power density of DMFC is enhanced by 36%. The improvement of the DMFCs with CCM is probably due to the significantly higher electrochemical reaction sites and the increased three-phase boundaries through the reduction in the loss of the Pt electrocatalysts in the gas diffusion layers and enhanced electrode/membrane interface.  相似文献   

12.
This work tries to study the problem of methanol crossover through the polymer electrolyte in direct methanol fuel cells (DMFCs) by developing new cathode electrocatalysts. For this purpose, a series of gas diffusion electrodes (GDEs) were prepared by using single-walled carbon nanotubes (SWCNTs) supported Pt–Pd (Pt–Pd/SWCNT) with different Pd contents at the fixed metal loading of 50 wt%, as bimetallic electrocatalysts, in the catalyst layer. Pt–Pd/SWCNT was prepared by depositing the Pt and Pd nanoparticles on a SWCNTs support. The elemental compositions of bimetallic catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES) system. The performances of the GDEs in the methanol oxidation reaction (MOR) and in the oxygen reduction reaction with/without the effect of methanol oxidation reaction were investigated by means of electrochemical techniques: cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The results indicated that GDEs with Pt–Pd/SWCNT possess excellent electrocatalytic properties for oxygen reduction reaction in the presence of methanol, which can originate from the presence of Pd atoms and from the composition effect.  相似文献   

13.
An epitaxial TiC/nanodiamond (ND) was used as novel support for Pt electrocatalysts to improve its durability in fuel cells. The TiC/ND was fabricated by a simple one-pot synthesis method. TiC/ND-supported Pt electrocatalysts were synthesized using a microwave-assisted ethylene glycol method. Pt nanoparticles (NPs) with a mean size of 4.4 nm were highly dispersed on the TiC/ND’s surface. The Pt/TiC/ND catalyst exhibited much higher electrocatalytic activity and stability in methanol oxidation reactions and oxygen reduction reactions than the Pt/ND catalyst. The electrochemical stability of the Pt/TiC/ND catalyst is more outstanding compared with the conventional carbon black supported Pt catalysts. The superior durability can be attributed to the chemical stability of ND core and the anchoring effect of the TiC layer to Pt NPs.  相似文献   

14.
The preparation and testing for electrocatalytic activity of functionalized carbon nanotube (f-CNT) supported Pt and Au–Pt nanoparticles (NPs), and bilirubin oxidase (BOD), are reported. These materials were utilized as oxygen reduction reaction (ORR) cathode electrocatalysts in a phosphate buffer solution (0.2 M, pH 7.4) at 25 °C, in the absence and presence of glucose. Carbon monoxide (CO) stripping voltammetry was applied to determine the electrochemically active surface area (ESA). The ORR performance of the Pt/f-CNTs catalyst was high (specific activity of 80.9 μA cmPt−2 at 0.8 V vs. RHE) with an open circuit potential within ca. 10 mV of that delivered by state-of-the-art carbon supported platinum catalyst and exhibited better glucose tolerance. The f-CNT support favors a higher electrocatalytic activity of BOD for the ORR than a commercially available carbon black (Vulcan XC-72R). These results demonstrate that f-CNTs are a promising electrocatalyst supporting substrate for biofuel cell applications.  相似文献   

15.
We describe a new class of electrocatalysts for the O2 reduction, and H2 and methanol oxidation reactions, consisting of a monolayer of Pt deposited on a metal or alloy carbon-supported nanoparticles. These electrocatalysts show up to a 20-fold increase in Pt mass activity compared with conventional all-Pt electrocatalysts. The origin of their increased activity was identified through a combination of experimental methods, employing electrochemical and surface science techniques, X-ray absorption spectroscopy, and density functional theory calculations. The long-term tests in fuel cells demonstrated excellent stability of the anode and good stability of the cathode electrocatalysts. We also describe the stabilization of Pt electrocatalysts against dissolution under potential cycling regimes effected by a submonolayer of Au clusters deposited on Pt surfaces. These new electrocatalysts promise to alleviate some of the major problems of existing fuel cell technology.  相似文献   

16.
N. Zhang  S. Zhang  Y. Gao  G. Yin 《Fuel Cells》2013,13(5):895-902
In this work, Pt nanoparticles are deposited on NbO2‐modified carbon composites and evaluated as promising direct methanol fuel cell (DMFC) electrocatalysts. Transmission electron microscopy (TEM) and X‐ray diffraction (XRD) indicate that Pt nanoparticles (about 2.5 nm) are uniformly dispersed on NbO2‐modified carbon composites. Electrochemical measurements show that the mass activity toward methanol electrooxidation on Pt/NbO2‐C is as high as 3.0 times that of conventional Pt/C. Meanwhile, the onset potential of CO oxidation is negatively shifted by about 46 mV as compared with that of Pt/C, which means that the synergistic effect between NbO2 and Pt facilitates the feasible removal of poisoning intermediate CO during methanol electrooxidation. X‐ray photoelectron spectroscopy (XPS) characterizations reveal the electron transfer from Nb to Pt, which suppress the poisoning CO adsorption on Pt nanoparticles and facilitate methanol electrooxidation. NbO2 nanoparticles facilitate methanol electrooxidation on Pt/C catalyst by synergistic effect and electronic effect, which represents a step in the right direction for the development of excellent fuel cell anode electrocatalysts.  相似文献   

17.
The low cost and highly efficient construction of electrocatalysts has attracted significant attention owing to the use of clean and sustainable energy technologies. In this work, cobalt nanoparticle decorated N-doped carbons (Co@NC) are synthesized by the pyrolysis of a cobalt covalent organic framework under an inert atmosphere. The Co@NC demonstrates improved electrocatalytic capabilities compared to N-doped carbon without the addition of Co nanoparticles, indicating the important role of cobalt. The well-dispersed active sites (Co–Nx) and the synergistic effect between the carbon matrix and Co nanoparticles greatly enhance the electrocatalytic activity for the oxygen reduction reaction. In addition, the Co content has a significant effect on the catalytic activity. The resulting Co@NC-0.86 exhibits a superb electrocatalytic activity for the oxygen reduction reaction in an alkaline electrolyte in terms of the onset potential (0.90 V), half-wave potential (0.80 V) and the limiting current density (4.84 mA·cm–2), and a high selectivity, as well as a strong methanol tolerance and superior durability, these results are comparable to those of the Pt/C catalyst. Furthermore, the superior bifunctional activity of Co@NC-0.86 was also confirmed in a home-built Zn-air battery, signifying the possibility for application in electrode materials and in current energy conversion and storage devices.  相似文献   

18.
Hard carbon spherules (HCS) were used as support of Pt nanoparticles as electrocatalyst for direct methanol fuel cells (DMFCs). Scanning electron microscopy (SEM) images show that the size of the Pt particles on HCS by reduction of K2PtCl6 with ethylene glycol is 4-5 nm. High-resolution transmission electron microscopy (HRTEM) study reveals that the Pt particles on the HCS surface have faceted crystalline structures. The size and aggregation of the Pt particles depend on the surface properties of the carbon support and the medium of the reduction reaction. Cyclic voltammetry and galvanostatic polarization experiments show that the Pt/HCS catalyst exhibits a higher catalytic activity in the electrooxidation of methanol than either the Pt/MCMB or the commercial Pt/Vulcan XC-72 catalyst does.  相似文献   

19.
C. Zhou  F. Peng  H. Wang  H. Yu  J. Yang  X. Fu 《Fuel Cells》2011,11(2):301-308
RuO2‐MnO2 complex supported by multi‐wall carbon nanotubes (CNTs) was firstly synthesised by the oxidation–reduction precipitation of RuCl3 and KMnO4 in one step. Then Pt was loaded onto the obtained RuO2‐MnO2/CNTs to fabricate a novel anodic catalyst Pt/RuO2‐MnO2/CNTs for direct methanol fuel cells (DMFCs). The catalyst was characterised by transmission electron microscopy (TEM), X‐ray diffraction (XRD), temperature programmed reduction (TPR), X‐ray photoelectron spectroscopy (XPS) and BET specific surface areas (BET). Pt nanoparticles were found uniformly dispersed on the surface of CNTs, with the average diameter of about 2.0 nm. The activities of methanol and CO electrocatalytic oxidation were analysed, and the reaction mechanism of methanol electro‐oxidation on Pt/RuO2‐MnO2/CNTs catalyst was discussed. The MnO2 in the catalysts improves the proton conductivity and electrochemical active surface area (EAS) for the catalysts. RuO2 improves the CO oxidation activity and Pt dispersion. CNTs provide effectively electron channels. Thus, the Pt/RuO2‐MnO2/CNTs catalyst has high utilisation of the noble metal Pt, high CO oxidation ability and excellent methanol electro‐oxidation activity, being an outstanding anode catalyst for DMFC.  相似文献   

20.
Low-Pt content (5%) carbon-supported Pt–Ni–TiO2 nanotube electrocatalysts were prepared via a microwave-assisted polyol strategy. Physical and morphological properties of these electrocatalysts were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), and energy dispersive X-ray spectroscopy (EDX). Cyclic voltammetry and chronoamperometry studies clearly suggested that the Pt(5%)–Ni(10%)–TiO2 nanotube (10%) supported by Vulcan XC-72 is better than the commercial 20% Pt/C electrocatalyst for methanol electro-oxidation in direct methanol fuel cells (DMFCs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号