首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, a novel self-humidifying membrane electrode assembly (MEA) with Pt/SiO2/C as anode catalyst was developed to improve the performance of proton exchange membrane fuel cell (PEMFC) operating at low humidity conditions. The characteristics of the composite catalysts were investigated by XRD, TEM and water uptake measurement. The optimal performance of the MEA was obtained with the 10 wt.% of silica in the composite catalyst by single cell tests under both high and low humidity conditions. The low humidity performance of the novel self-humidifying MEA was evaluated in a H2/air PEMFC at ambient pressure under different relative humidity (RH) and cell temperature conditions. The results show that the MEA performance was hardly changed even if the RHs of both the anode and cathode decreased from 100% to 28%. However, the low humidity performance of the MEA was quite susceptible to the cell temperature, which decreased steeply as the cell temperature increased. At a cell temperature of 50 °C, the MEA shows good stability for low humidity operating: the current density remained at 0.65 A cm−2 at a usual work voltage of 0.6 V without any degradation after 120 h operation under 28% RH for both the anode and cathode.  相似文献   

2.
In this work, membrane resistance measurement and water balance experiment were implemented to investigate the feasibility for a PEM fuel cell operating with dry hydrogen. The results showed that when a thin membrane was used in a cell the performance and the membrane resistance changed a little while the anode humidity changed from saturated to dry. Comparing with the anode humidity, the influence of the cathode humidity was serious on the cell performance. The water balance experiments showed that the net water transport coefficient was negative even the anode was humidified and liquid water existed not only in the cathode but also in the anode. High cathode humidity was disadvantage for the removal of water both in the anode and the cathode.  相似文献   

3.
A two-dimensional, one-phase model for hydrogen and water vapor transport inside a hydrogen-hydrogen cell is presented. The model was used to analyze the results of water transport measurements. As a result, the concentration dependence of the diffusion coefficient of water in membrane of Gore Primea® Series 58 MEA was achieved. Temperature differences inside a hydrogen-hydrogen cell were studied with modeling approach and it was found that the cell can be treated as an isothermal system.  相似文献   

4.
Water-content profiles across the membrane electrode assembly of a polymer-electrolytefuel cell were measured using high-resolution neutron imaging and compared to mathematical-modeling predictions. It was found that the membrane held considerably more water than the other membrane-electrode constituents (catalyst layers, microporous layers, and macroporous gas-diffusion layers) at low temperatures, 40 and 60 °C. The water content in the membrane and the assembly decreased drastically at 80 °C where vapor transport and a heat-pipe effect began to dominate the water removal from the membrane-electrode assembly. In the regimes where vapor transport was significant, the through-plane water-content profile skewed towards the cathode. Similar trends were observed as the relative humidity of the inlet gases was lowered. This combined experimental and modeling approach has been beneficial in rationalizing the results of each and has given insight into future directions for new experimental work and refinements to currently available models.  相似文献   

5.
The effect of high air relative humidity (RH) cycling (RHC 62%/100%) on the degradation mechanisms of a single (5 × 5 cm2) proton exchange membrane fuel cells was investigated. The cell performance was compared to a cell operated at constant humidification (RHC = 62%). Runs were conducted over approximately 1,500 h at 0.3 A cm–2. The overall loss in cell performance for the high RH cycling test was 12 μV h–1 whereas it was at 3 μV h–1 under constant humidification. Impedance spectroscopy reveals that the ohmic and charge transfer resistances were little modified in both runs. H2 crossover measurement indicated that both high RH cycling and constant RH test did not promote serious effect on gas permeability. The electroactive surface loss for anode and cathode during high air RH cycling was more significant than at constant RH operation. The water uptake determined by 1H nuclear magnetic resonance within the membrane electrode assembly (MEA) after high RH cycling was reduced by 12% in comparison with a fresh MEA. Transmission electron microscopy showed bubbles and pinholes formation in the membrane, catalyst particles agglomeration (also observed by X‐ray diffraction), catalyst particles migration in the membrane and thickness reduction of the catalytic layers. Scanning electron microscopy was conducted to observe the changes in morphology of gas diffusion layers after the runs.  相似文献   

6.
Gas diffusion layers (GDLs) in the proton exchange membrane fuel cells (PEMFCs) enable the distribution of reactant gases to the reaction zone in the catalyst layers by controlling the water in the pore channels apart from providing electrical and mechanical support to the membrane electrode assembly (MEA). In the present work, we report the in situ growth of carbon nanotubes nanoforest (CNN) directly onto macro‐porous carbon paper substrates. The surface property as analysed by a Goniometer showed that the CNN/carbon paper surface is highly hydrophobic. CNN/carbon paper was employed as a GDL in an MEA using Nafion‐212 membrane as an electrolyte and evaluated in single cell PEMFCs. While the GDLs prepared by wire‐rod coating process have major performance losses at lower humidities, the in situ CNN/carbon paper, developed in this work, shows very stable performance at all humidity conditions demonstrating a significant improvement for fuel cell performance. The CNN/carbon‐based MEAs showed very stable performance with power density values of ∼1,100 and 550 mW cm–2, respectively, both using O2 and air as oxidants at ambient pressure.  相似文献   

7.
K.‐M. Yin  H.‐K. Hsuen 《Fuel Cells》2013,13(6):1213-1225
One‐dimensional model on the membrane electrode assembly (MEA) of proton exchange membrane fuel cell is proposed, where the membrane hydration/dehydration and the possible water flooding of the respective cathode and anode gas diffusion layers are considered. A novel approach of phase‐equilibrium approximation is proposed to trace the water front and the detailed saturation profile once water emerges in either anode or cathode gas diffusion layer. The approach is validated by a semi‐analytical method published earlier. The novel approach is applicable to the polarization regime from open circuit voltage to the limiting current density under practical operation conditions. Oxygen diffusion is limited by water accumulation in the cathode gas diffusion layer as current increases, caused by excessive water generation at the cathode catalyst layer and the electro‐osmotic drag across the membrane. The existence of liquid water in the anode gas diffusion layer is predicted at low current densities if high degrees of humidification in both anode and cathode feeds are employed. The influences of inlet relative humidity, imposed pressure drop, and cell temperature are correlated well with the cell performance. In addition, the overpotentials attributed from individual components of the MEA are delineated against the cell current densities.  相似文献   

8.
S. Zils  M. Timpel  T. Arlt  A. Wolz  I. Manke  C. Roth 《Fuel Cells》2010,10(6):966-972
It is well known that the electrode structure of a PEMFC has a huge influence on the water management and thereby on the cell performance. In this work, two MEAs – one prepared by an airbrushing technique and the other by a novel fast spray coating technique (multilayered MEA) – were analysed with respect to porosity, pore size distribution, tortuosity and their electrochemical performance. FIB nanotomography with following 3D reconstruction, SEM investigation on ultramicrotomic thin‐sections, and single cell tests were performed on these MEAs. The results show a higher porosity and lower pore size for the multilayered MEA. The multilayered MEA reaches a Pt utilisation of 1,962 mW mg–1 and a peak power density of 210 mW cm–2, whereas the airbrushed MEA only provides a Pt utilisation of 879 mW mg–1 and a peak power density of 218 mW cm–2. The Pt utilisation calculations showed in combination with the structural characterisations that a homogeneous pore structure and Pt distribution provide an advantage with regard to performance and efficiency of the PEMFC. Furthermore, the multilayered MEA may offer an advantage over the airbrushed MEA in its long term stability, which was observed in preliminary tests.  相似文献   

9.
Fuqiang Liu 《Electrochimica acta》2008,53(17):5517-5522
Various anode diffusion media have been experimentally studied to reduce water crossover in a direct methanol fuel cell (DMFC). A two-phase water transport model was also employed to theoretically study their effects on water transport and saturation level in a DMFC anode. It is found that wettability of the anode microporous layer (MPL) has a dramatic effect on water crossover or the water transport coefficient (α) through the membrane. Under different current densities, the MEA with a hydrophobic anode MPL has consistently low α, several times smaller than those with a hydrophilic MPL or without an anode MPL. Methanol transport in the anode is found to be not influenced by a hydrophobic anode MPL but inhibited by a hydrophilic one. Constant-current discharge shows that the MEA with hydrophobic anode MPL displays much smaller voltage fluctuation than that with the hydrophilic one. A modeling study of anode water transport reveals that the liquid saturation in the anode is lowered significantly with the increase of anode MPL contact angle, which is thus identified as a key parameter to minimize water crossover in a DMFC.  相似文献   

10.
A commercial 50 cm2 polymer electrolyte membrane (PEM) fuel cell with serpentine flow fields was operated at 2.0 bar and 60 °C with two orientations of the flow field channels with respect to gravity, i.e. horizontal and vertical channels. A 3 × 3 test matrix of anode and cathode reactants relative humidity was used for the performance assessment of the cell in both orientations. The cell performance and operating data, including cell voltage and resistance, were measured, and neutron radiographs were recorded during the entire operation in order to gain knowledge of the liquid water distributions within the cell for both orientations. A quantitative analysis of the results is presented in this work, comparing the cell operation for both flow field orientations. It is observed that the configuration with horizontal cathode flow field channels presents a better cell performance, and less amount of liquid water blocking the flow field channels. Thus, the results show that the selection of the cell orientation has an influence on the final performance, and it is therefore, a design parameter to be considered for a real application. The differences in the cell water content are quantitatively analyzed and discussed.  相似文献   

11.
Models play an important role in fuel cell design/development. The most critical problems to overcome in the proton exchange membrane (PEM) fuel cell technology are the water and thermal management. In this work, a steady-state, one-dimensional model accounting for coupled heat and mass transfer in a single PEM fuel cell is presented. Special attention is devoted to the water transport through the membrane which is assumed to be a combined effect of diffusion and electro-osmotic drag. The transport of heat through the gas diffusion layers is assumed to be a conduction-predominated process and heat generation or consumption is considered in the catalyst layers. The analytical solutions for concentration and net water transport coefficient are compared with recent published experimental data. The operating conditions considered are various cathode and anode relative humidity (RH) values at and 2 atm. The studied conditions correspond to relatively low values of RH, conditions of special interest, namely, in the automotive applications. Model predictions were successfully compared to experimental and theoretical I-V polarization curves presented by Hung et al. [2007. Operation-relevant modelling of an experimental proton exchange membrane fuel cell. Journal of Power Sources 171, 728-737] and Ju et al. [2005a. A single-phase, non-isothermal model for PEM fuel cells. International Journal of Heat and Mass Transfer 48, 1303-1315]. The developed easy to implement model using low CPU consumption predicts reasonably well the influence of current density and RH on the net water transport coefficient as well as the oxygen, hydrogen and water vapour concentrations at the anode and cathode. The model can provide suitable operating ranges adequate to different applications (namely low humidity operation) for variable MEA structures.  相似文献   

12.
A 5-cell proton exchange membrane fuel cell (PEMFC) stack with different types of membrane electrode assemblies (MEAs) was tested to compare their performances and electrochemical characteristics. The experimental data were obtained with a stack of 5 cells and active area of 125 cm2. The stack consisted of different Nafion® and hydrocarbon membranes with the same types of electrocatalyst. The membranes were installed in different cells and in the same stack. Polarization and voltage measurement data were obtained to compare their performances at different temperatures and anode humidity conditions. Also, impedance spectroscopy data were obtained in similar manner to compare the differences in their resistance.  相似文献   

13.
《分离科学与技术》2012,47(1):28-34
Submerged hollow fiber membrane system is widely used in water and wastewater treatment plants. One of the major problems of the microfiltration/ultrafiltration (MF/UF) process is membrane fouling. Few techniques have been developed to reduce membrane fouling and increase critical flux of the filtration process. In this study, membrane vibration was applied to improve the critical flux in a submerged hollow fiber MF system. A bench scale unit was especially built for this purpose and different vibrating speed was tested. The effect of the feed concentration and vibrating speed on the critical flux measurement were investigated. The critical flux was measured at different vibrating speeds varied from 0–500 oscillation per minute (opm) (5.83 Hz). The lowest critical flux was 15 L·m?2·h?1 when no membrane vibration was used and then increased gradually from 27 to 56 L·m?2·h?1 when the vibrating speed increased from 100 to 500 opm (8.35 Hz). A sharp drop in the critical flux was noticed when the concentration of feed suspension doubled from 5 g/L to 10 g/L. However, the increase in the critical flux was insignificant at higher feed concentration even when a high membrane vibrating speed was applied. This signifies that there is a limit for flux improvement in a vibratory system which is strongly dependent on the feed concentration.  相似文献   

14.
In a polymer electrolyte membrane fuel cell (PEMFC), slow diffusion in the gas diffusion electrode may induce oxygen depletion when using air at the cathode. This work focuses on the behavior of a single PEMFC built with a Nafion® based MEA and an E-TEK gas diffusion layer and fed at the cathode with nitrogen containing 5, 10 and 20% of oxygen and working at different cell temperatures and relative humidities. The purpose is to apply the experimental impedance technique to cells wherein transport limitations at the cathode are significant. In parallel, a model is proposed to interpret the polarization curves and the impedance diagrams of a single PEMFC. The model accounts for mass transport through the gas diffusion electrode. It allows us to qualitatively analyze the experimental polarization curves and the corresponding impedance spectra and highlights the intra-electrode processes and the influence of the gas diffusion layer.  相似文献   

15.
质子交换膜燃料电池两维、两相流动模型   总被引:1,自引:0,他引:1  
提出了考虑电池内部两相流动的质子交换膜燃料电池数学模型,模拟了阳极、阴极两侧的流道和扩散层中同时发生两相流动时电池内部的各种传递特性,并用实验数据验证了该模型的准确性。模拟结果显示,当电池阴极扩散层中有液态水存在时会大大降低膜中的局部电流密度;质子交换膜中水的净通量方向可正、可负,因此电池的增湿策略应根据不同的运行工况而不断变化。  相似文献   

16.
Forward osmosis (FO), as an emerging technology, is influenced by different factors such as operating conditions, module characteristics, and membrane properties. The general aim of this study was to develop a suitable (flexible, comprehensive, and convenient to use) computational tool which is able to simulate osmosis through an asymmetric membrane oriented in pressure retarded osmosis (PRO) mode in a wide variety of scenarios. For this purpose, an agent-based model was created in NetLogo platform, which is an easy-to-use application environment with graphical visualization abilities and well suited for modeling a complex system evolving over time. The simulation results were validated with empirical data obtained from literature and a great agreement was observed. The effect of various parameters on process performance was investigated in terms of temperature, cross-flow velocity, length of the module, pure water permeability coefficient, and structural parameter of the membrane. Results demonstrated that the increase in all parameters, except structural parameter of the membrane and the length of module led to the increase of average water flux. Moreover, nine different draw solutes were selected in order to assess the influence of net bulk osmotic pressure difference between the draw solution (DS) and feed solution (FS) (known as the driving force of FO process) on water flux. Based on the findings of this paper, the performance of FO process (PRO mode) can be efficiently evaluated using the NetLogo platform.  相似文献   

17.
Permeability coefficients and activation energy values for the transport of water through asymmetric cellulose acetate membranes were determined in order to establish the mechanism of the process when different driving forces are applied. A stirred Lucite cell with controlled temperature was used to measure the membrane transport properties under hydraulic and osmotic pressure differences and also in the presence of a tracer concentration gradient across the membrane. The experimental results based on the temperature dependence of water flow show that the controlling step for water transport is diffusion with net flux in the dense zone of the membrane under hydraulic or osmotic pressure gradients. When a tracer concentration gradient is used, equimolar diffusion of water in the thicker, porous zone of the membrane is the controlling mechanism. A mass transport model based on the composed structure of the membrane is presented to provide a general framework for treating the particular cases. Finally, the difference in the controlling barriers, in agreement with a previous work by Hays,18 is shown to account for the much higher absolute values of osmotic than tracer water permeabilities determined here and frequently reported in the literature.  相似文献   

18.
The interaction of Nafion® 212 membrane with a carbocyclic fuel, decalin was studied. Membrane electrode assemblies (MEA) fabricated with decalin treated membranes exhibited significant increase in power density in a H2/Air fuel cell at 60% relative humidity. Small angle X‐ray scattering experiments were used to understand the morphological changes in the membrane due to decalin treatment.  相似文献   

19.
A pilot study for reclamation of secondary treated sewage effluent in Singapore was conducted using a MF/RO system with the capacity of 20 m3/d. A 0.1 μm MF membrane from Asahi and RE-4040-FL RO membrane from Saehan were used in this study. The pilot plant consists of six spiral-wound RO elements. The RO train was configured in single stage. The pilot plant was designed with automatic control system and it was operated continuously (24 h) during the study. Trial runs on various flux rates of the RO membrane at different operating pressures were conducted over 3 months. The pilot results showed that the optimal operation flux rate of the RO membrane ranged from 10 to 15 gal/f2/d (GFD) for this application. The normalized flux after CIP was 97% of the initial one. At a flux rate of 10 GFD and water recovery of 50%, the average operating pressure of 57 psi was noted corresponding to a high normalized flux of 38 L m−2 h−1 MPa−1 at 25°C. Rejections of the RO membrane in terms of conductivity, TOC, ammonium and nitrate were higher than 96%,97%,90% and 85%, respectively. It was concluded that the RO permeate quality in terms of conductivity, turbidity, TOC, ammonium, nitrate, hardness, total bacteria and total coliform matched the quality of high-grade water (NEWater) for use in the electronics industry.  相似文献   

20.
We present a simple glue method for fabricating membrane electrode assemblies (MEA) for direct methanol fuel cells (DMFC). Rather than the conventional “dry” hot-pressing method that relies solely on hot-pressing at a high pressure and temperature to form a MEA, the “wet” method developed in this work introduces a binding agent, consisting of Nafion® solution, between a polymer electrolyte membrane (PEM) and an anode/cathode. The introduced binding agent can provide a better adhesion and stronger binding force between a membrane and an electrode, thereby facilitating a better interfacial contact between the electrode and the Nafion® membrane, which has been proved by scanning electron microscopy (SEM) analyses to the cross-sectional morphology of the MEA after long-term operation. The cell performance characterization showed the MEA fabricated by the glue method was more stable in cell performance than that fabricated by the conventional hot-pressing method. Cyclic voltammetry (CV) results also demonstrated the MEA fabricated by the glue method exhibited a higher electrochemical surface area (ESA) as a result of the improved interfacial contact between the Nafion® membrane and the electrodes. Finally, the DMFC with the MEA fabricated by the glue method was characterized by the electrochemical impedance spectroscopy (EIS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号