首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional numerical simulation of straight channel PEM fuel cells   总被引:30,自引:0,他引:30  
The need to model three-dimensional flow in polymer electrolyte membrane (PEM) fuel cells is discussed by developing an integrated flow and current density model to predict current density distributions in two dimensions on the membrane in a straight channel PEM fuel cell. The geometrical model includes diffusion layers on both the anode and cathode sides and the numerical model solves the same primary flow related variables in the main flow channel and the diffusion layer. A control volume approach is used and source terms for transport equations are presented to facilitate their incorporation in commercial flow solvers. Predictions reveal that the inclusion of a diffusion layer creates a lower and more uniform current density compared to cases without diffusion layers. The results also show that the membrane thickness and cell voltage have a significant effect on the axial distribution of the current density and net rate of water transport. The predictions of the water transport between cathode and anode across the width of the flow channel show the delicate balance of diffusion and electroosmosis and their effect on the current distribution along channel.  相似文献   

2.
PEM燃料电池中质子交换膜内水和质子的迁移特性   总被引:1,自引:1,他引:0  
孙红  郭烈锦  刘洪潭  张广升 《化工学报》2005,56(6):1081-1085
质子交换膜的水含量及水和质子的迁移对PEM燃料电池的性能具有重要影响.提出了一个稳态两相流数学模型,用以研究质子交换膜中的水迁移和水含量及其与质子传递阻力的关系.模型耦合了连续方程、动量守恒方程、物料守恒方程和水在质子交换膜中的传递方程.通过与实验数据对比,验证了模型的有效性.分析模拟结果发现,当电流密度相同时,沿气体流动方向,质子交换膜中水的电渗拉力系数、反扩散系数和水力渗透系数逐步增大,而水的净迁移系数逐步减小;同时,质子交换膜的含水量增加,质子传递阻力逐步下降;增大电池的操作压力,电渗拉力系数、反扩散系数、水力渗透系数、水净迁移系数和质子膜的含水量增加,而质子传递阻力下降,使燃料电池的性能得到了提高.  相似文献   

3.
质子交换膜燃料电池两维、两相流动模型   总被引:1,自引:0,他引:1  
提出了考虑电池内部两相流动的质子交换膜燃料电池数学模型,模拟了阳极、阴极两侧的流道和扩散层中同时发生两相流动时电池内部的各种传递特性,并用实验数据验证了该模型的准确性。模拟结果显示,当电池阴极扩散层中有液态水存在时会大大降低膜中的局部电流密度;质子交换膜中水的净通量方向可正、可负,因此电池的增湿策略应根据不同的运行工况而不断变化。  相似文献   

4.
In this work, membrane resistance measurement and water balance experiment were implemented to investigate the feasibility for a PEM fuel cell operating with dry hydrogen. The results showed that when a thin membrane was used in a cell the performance and the membrane resistance changed a little while the anode humidity changed from saturated to dry. Comparing with the anode humidity, the influence of the cathode humidity was serious on the cell performance. The water balance experiments showed that the net water transport coefficient was negative even the anode was humidified and liquid water existed not only in the cathode but also in the anode. High cathode humidity was disadvantage for the removal of water both in the anode and the cathode.  相似文献   

5.
Models play an important role in fuel cell design/development. The most critical problems to overcome in the proton exchange membrane (PEM) fuel cell technology are the water and thermal management. In this work, a steady-state, one-dimensional model accounting for coupled heat and mass transfer in a single PEM fuel cell is presented. Special attention is devoted to the water transport through the membrane which is assumed to be a combined effect of diffusion and electro-osmotic drag. The transport of heat through the gas diffusion layers is assumed to be a conduction-predominated process and heat generation or consumption is considered in the catalyst layers. The analytical solutions for concentration and net water transport coefficient are compared with recent published experimental data. The operating conditions considered are various cathode and anode relative humidity (RH) values at and 2 atm. The studied conditions correspond to relatively low values of RH, conditions of special interest, namely, in the automotive applications. Model predictions were successfully compared to experimental and theoretical I-V polarization curves presented by Hung et al. [2007. Operation-relevant modelling of an experimental proton exchange membrane fuel cell. Journal of Power Sources 171, 728-737] and Ju et al. [2005a. A single-phase, non-isothermal model for PEM fuel cells. International Journal of Heat and Mass Transfer 48, 1303-1315]. The developed easy to implement model using low CPU consumption predicts reasonably well the influence of current density and RH on the net water transport coefficient as well as the oxygen, hydrogen and water vapour concentrations at the anode and cathode. The model can provide suitable operating ranges adequate to different applications (namely low humidity operation) for variable MEA structures.  相似文献   

6.
Numerical studies of cold-start phenomenon in PEM fuel cells   总被引:1,自引:0,他引:1  
Hua Meng 《Electrochimica acta》2008,53(22):6521-6529
In this paper, a PEM fuel cell model for cold-start simulations has been employed for numerical investigations of the cell startup characteristics from subfreezing temperatures. The effects of many key parameters on fuel cell isothermal cold-start behaviors have been carefully examined. Numerical results indicate that a high gas flow rate in the cathode gas channel, a low initial membrane water content, a low current density under the constant current condition, and a high cell voltage under the constant cell voltage operation are beneficial for the PEM fuel cell isothermal cold-start processes. Increasing the startup cell temperature would significantly delay ice formation and consequently lead to longer cold-start time. Therefore, incorporating internal and external heating sources in the cell design scheme is very important for achieving fast and successful cold start of a PEM fuel cell from subfreezing temperatures.  相似文献   

7.
Hao Wu  Peter Berg 《Electrochimica acta》2009,54(27):6913-6927
Water management is a critical issue in polymer electrolyte membrane (PEM) fuel cells, and water transport through the membrane, catalyst layer and gas diffusion layer has significant impact on the cell performance and durability. In this study, the mechanism of water transport processes in PEM fuel cells has been analyzed through 3-D unsteady non-isothermal simulations, along with a comprehensive examination of various modeling approaches in literature. It is shown that the finite rates of sorption/desorption of water in membrane affect the cell current output and the cell response time. Water dissolved in the membrane should be taken as the proper mechanism of water formation in the cathode of practical PEM fuel cells. Capillary pressure and relative permeability have significant impact on the distribution of liquid water saturation and transport, implying a need for their determination under specific PEM fuel cell conditions.  相似文献   

8.
阴极多孔介质中液态水的含量对PEM燃料电池阴极中的传质及其性能具有极其重要的影响。提出了一个二维、两相、稳态数学模型,研究PEM燃料电池阴极中两相水的传递及其对电池性能的影响。模型耦合了连续方程、动量方程和组分守恒方程,并将质子膜中的净水迁移通量作为边界条件之一来处理。通过实验的方法和数值模拟的方法,研究了电池操作压力和温度对电池性能的影响,同时验证了模型的有效性。模拟发现:提高操作压力和升高阴极加湿温度使电池阴极催化剂层(CTL)和扩散层(GDL)界面上的液态水含量大幅提高;升高阳极加湿温度,电池阴极CTL和GDL界面上的液态水含量变化不明显;而升高燃料电池的操作温度,阴极CTL和GDL界面上液态水的含量降低。  相似文献   

9.
质子交换膜燃料电池水传递模型   总被引:31,自引:3,他引:28       下载免费PDF全文
提出了用于研究质子交换膜燃料电池膜中水分布、水传递量分布、电流密度分布等的二维数学模型;系统地考察了电池温度、阴阳极压力差、增湿程度、质子膜厚度等条件对水的传递和膜中水分布的影响.计算结果表明:①阳极增湿能够提高气体进口段膜阳极侧水的含量;②使用越薄的质子膜,越能提高膜中水的含量;③阳极增湿程度越大,由阳极向阴极迁移的水量越多.  相似文献   

10.
Oxygen transport across the cathode gas diffusion layer (GDL) in polymer electrolyte membrane (PEM) fuel cells was examined by varying the O2/N2 ratio and by varying the area of the GDL extending laterally from the gas flow channel under the bipolar plate (under the land). As the cathode is depleted of oxygen, the current density becomes limited by oxygen transport across the GDL. Oxygen depletion from O2/N2 mixtures limits catalyst utilization, especially under the land.The local current density with air fed PEM fuel cells falls to practically zero at lateral distances under the land more than 3 times the GDL thickness; on the other hand, catalyst utilization was not limited when the fuel cell cathode was fed with 100% oxygen. The ratio of GDL thickness to the extent of the land is thus critical to the effective utilization of the catalyst in an air fed PEM fuel cell. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

11.
Mathematical models on transport processes and reactions in proton exchange membrane (PEM) fuel cell generally assume an isothermal cell behavior for sake of simplicity. This work aims at exploring how a non-isothermal cell body affects the performance of PEM fuel cells with single and double serpentine cathode flow fields, considering the effects of flow channel cross-sectional areas. Low thermal conductivities of porous layers in the cell and low heat transfer coefficients at the surface of current collectors, as commonly adopted in cell design, increase the cell temperature. High cell temperature evaporates fast the liquid water, hence reducing the cathode flooding; however, the yielded low membrane water content reduces proton transport rate, thereby increasing ohmic resistance of membrane. An optimal cell temperature is presented to maximize the cell performance.  相似文献   

12.
The characterisation of a proton exchange membrane (PEM) fuel cell with a straight channel flow field design is performed. Spatially resolved current distribution measurements, at different air flow rates, are compared to numerical simulation results. The numerical model is validated by agreement of the measured and simulated current distribution. The test cell is segmented. It is operated at steady state conditions and the gas flow rates and cell temperature are controlled. The numerical simulation is realised with a PEM fuel cell model based on FLUENT™ computational fluid dynamics (CFD) software. It accounts for mass transport in the gaseous phase, heat transfer, electrical potential field and the electrochemical reaction. It provides three‐dimensional distributions of, e.g., current densities, reactant concentrations and temperature.  相似文献   

13.
Experimental and numerical studies of portable PEMFC stack   总被引:1,自引:0,他引:1  
The objective of this work is to establish the design principles of a proton exchange membrane (PEM) fuel cell (FC) stack for portable applications. A combination of experiments and numerical simulations were carried out and the results analyzed to enhance understanding of the behavior of this portable PEMFC stack. A three-dimensional (3D) computational fluid dynamics (CFD)-based methodology was used to predict such as the current and temperature distributions of this portable PEMFC stack. The results show how the baseline operation and original design of this stack impact the local temperature, water content, water transport, and kinetic variables inside the individual cells. The outcome of this work will pursue the development of universal heuristics and dimensionless numbers correlated to portable PEMFC stack design.  相似文献   

14.
A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conventional and the interdigitated modes of flow are presented on a three-dimensional basis. Numerical techniques for this model are discussed in detail. Validation shows good agreement between simulating results and experimental data. Furthermore, internal transport phenomena are discussed and compared for PEM fuel cells with conventional and interdigitated flows. It is found that the dead-ended structure of an interdigitated flow does increase the oxygen mass fraction and decrease the liquid water saturation in the gas diffusion layer as compared to the conventional mode of flow. However, the cathode humidification is important for an interdigitated flow to acquire better performance than a conventional flow fuel cell.  相似文献   

15.
The effects of inhomogeneous compression of gas diffusion layers (GDLs) on local transport phenomena within a polymer electrolyte membrane (PEM) fuel cell were studied theoretically. The inhomogeneous compression induced by the rib/channel structure of the flow field plate causes partial deformation of the GDLs and significantly affects component parameters. The results suggest that inhomogeneous compression does not significantly affect the polarisation behaviour or gas–phase mass transport. However, the effect of inhomogeneous compression on the current density distribution is evident. Local current density under the channel was substantially smaller than that under the rib when inhomogeneous compression was taken into account, while the current density distribution was fairly uniform for the model which excluded the effect of inhomogeneous compression. This is caused by the changes in the selective current path, which is determined by the combination of conductivities of components and contact resistance between them. Despite the highly uneven current distribution and variation in material parametres as a function of GDL thickness, the temperature profile was relatively even over the active area for both the modelled cases, contrary to predictions in previous studies. However, an abnormally high current density significantly accelerates deterioration of the membrane and is critical in terms of cell durability. Therefore, fuel cells should be carefully designed to minimise the harmful effects of inhomogeneous compression.  相似文献   

16.
A three-dimensional numerical model is developed to simulate the transport phenomena on the cathodic side of a polymer electrolyte membrane fuel cell (PEMFC) that is in contact with parallel and interdigitated gas distributors. The computational domain consists of a flow channel together with a gas diffusion layer on the cathode of a PEMFC. The effective diffusivities according to the Bruggman correlation and Darcy's law for porous media are used for the gas diffusion layer. In addition, the Tafel equation is used to describe the oxygen reduction reaction (ORR) on the catalyst layer surface. Three-dimensional transport equations for the channel flow and the gas diffusion layer are solved numerically using a finite-volume-based numerical technique. The nature of the multi-dimensional transport in the cathode side of a PEMFC is illustrated by the fluid flow, mass fraction and current density distribution. The interdigitated gas distributor gives a higher average current density on the catalyst layer surface than that with the parallel gas distributor under the same mass flow rate and cathode overpotential. Moreover, the limiting current density increased by 40% by using the interdigitated flow field design instead of the parallel one.  相似文献   

17.
Dynamics of polymer electrolyte fuel cells undergoing load changes   总被引:1,自引:0,他引:1  
Yun Wang 《Electrochimica acta》2006,51(19):3924-3933
Numerical simulations are carried out for a single-channel polymer electrolyte fuel cell (PEFC) undergoing a step increase in current density. The objective is to elucidate profound interactions between the cell voltage response and water transport dynamics occurring in a low-humidity PEFC where the membrane hydration and hence resistance hinges upon the product water. Detailed results are presented to show that a step increase in the current density leads to anode dryout due to electroosmotic drag, while it takes several seconds for water back-diffusion and anode humidified gas to re-wet the anode side of the polymer membrane. The water redistribution process is controlled by water production, membrane hydration, electroosmotic drag, and water diffusion in the membrane. The anode dryout results in a substantial drop in cell voltage and hence temporary power loss. Under extreme situations such as dry anode feed, large step increase in the current density, and/or lower temperatures, the cell voltage may even reverse, resulting in not only power loss but also cell degradation. Finally, the dynamics of current distribution after a step change in gas humidification is numerically examined.  相似文献   

18.
A one‐dimensional (1D) model of oxygen transport in the diffusion media of proton exchange membrane fuel cells (PEMFC) is presented, which considers convection perpendicular to the electrode in addition to diffusion. The resulting analytical expression of the convecto‐diffusive impedance is obtained using a convection–diffusion equation instead of a diffusion equation in the case of classical Warburg impedance. The main hypothesis of the model is that the convective flux is generated by the evacuation of water produced at the cathode which flows through the porous media in vapor phase. This allows the expression of the convective flux velocity as a function of the current density and of the water transport coefficient α (the fraction of water being evacuated at the cathode outlet). The resulting 1D oxygen transport impedance neglects processes occurring in the direction parallel to the electrode that could have a significant impact on the cell impedance, like gas consumption or concentration oscillations induced by the measuring signal. However, it enables us to estimate the impact of convection perpendicular to the electrode on PEMFC impedance spectra and to determine in which conditions the approximation of a purely diffusive oxygen transport is valid. Experimental observations confirm the numerical results.  相似文献   

19.
Key challenges to the acceptance of polymer electrolyte membrane fuel cells (PEMFCs) for automobiles are the cost reduction and improvement in its power density for compactness. In order to get the solution, the further improvement in a fuel cell performance is required. In particular, under higher current density operation, water and heat transport in PEMFCs has considerable effects on the cell performance. In this study, the impact of heat and water transport on the cell performance under high current density was investigated by experimental evaluation of liquid water distribution and numerical validation. Liquid water distribution in MEA between rib and channel area is evaluated by neutron radiography. In order to neglect the effect of liquid water in gas channels and reactant species concentration distribution in the flow direction, the differential cell was used in this study. Experimental results suggested that liquid water under the channel was dramatically changed with rib/channel width. From the numerical study, it is found that the change of liquid water distribution was significantly affected by temperature distribution in MEA between rib and channel area. In addition, not only heat transport but also water transport through the membrane also significantly affected the cell performance under high current density operation.  相似文献   

20.
A simple tanks-in-series model is presented, which allows for the understanding of the basic physics behind complex spatiotemporal behaviors observed in self-humidified polymer electrolyte membrane (PEM) fuel cells. Our approach is focused on how the intrinsically nonlinear dynamics of water formation couples with water transport, leading to multistability, inhomogeneous steady state current profiles through the cell and other nonlinear phenomena. We show in particular how the operating parameters determine the location of high current spots and the subsequent propagation of current waves throughout the cell during the ignition procedure. We also reproduce and explain transient current increases seen during the extinction of the cell and the unusual aspect of the polarization curves. Implications for the efficiency of self-humidified PEM fuel cells are highlighted, and possible ways to improve their performances are discussed on these bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号