共查询到17条相似文献,搜索用时 62 毫秒
1.
基于ICA和SVM的虹膜识别方法 总被引:1,自引:0,他引:1
提出了一种基于独立分量分析和支持向量机的虹膜识别方法-ICA提取虹膜特征,SVM实现模式匹配.与Gabor小波的方法比较,在编码长度和编码时间方面有较明显地改进.实验结果表明,该算法能够有效地应用到身份鉴别系统中. 相似文献
2.
3.
特征提取和分类是虹膜识别中的关键部分.由于小波分解后的低频子带包含了虹膜图像的主要信息,而Log-Gabor滤波能有效地提取出图像的纹理信息,将这两种方法结合是一个提取虹膜识别信息的有效途径.本文先对归一化的虹膜采用小波变换的方法细分图像,再用Log-Gabor滤波器对低频通道的子带图像进行更进一步的特征提取并量化,形成特征码本,最后采用支持向量机的分类器来进行分类.实验结果表明,分类器能很好地分离各类虹膜,识别率提高到了99.6%,等错率则降低为0.3%,比传统汉明距的分类方式有更优异的性能. 相似文献
4.
提出了一种使用支持向量机(Support Vector Machine,SVM)的分数等级融合的虹膜识别方法。通过对虹膜纹理采用小波包分解,选择最高能量区域和次高能量区域提取特征向量,与注册入库的虹膜特征向量计算出海明距离。最后融合两个海明距离输入SVM进行识别。该方法减少输入支持向量机的维数。实验结果表明,该法提高了识别率,能够有效地应用到身份鉴别系统中。 相似文献
5.
提出了一种新的虹膜特征提取与识别方法。对虹膜纹理采用最大判别熵的独立分量分析(ICA-MJE)实现特征提取,通过支持向量机(SVM)完成模式匹配。与Gabor小波的方法比较,在编码长度和编码时间方面有明显地改进。实验结果表明,该算法能更好地提高虹膜的识别率并能够有效地应用于身份识别系统中。 相似文献
6.
7.
8.
针对虹膜识别过程中的特征提取及识别问题,提出了用独立成分分析提取虹膜特征,用核向量机进行识别的方法.从采集到的人眼图像中定位虹膜,并对其进行归一化处理和图像增强处理.用独立成分分析提取统计独立的特征,通过选择合适的特征个数可以达到较高的识别准确率.在得到虹膜特征编码后,用核向量机进行分类判决,核向量机是一种适合大规模数据集的快速支持向量机训练算法,并将结果与支持向量机的分类结果进行了对比.实验结果表明了该方法的可行性和有效性. 相似文献
9.
提出了一种基于小波包变换和支持向量机的虹膜识别方法.用小波包变换对归一化的虹膜图像进行2层分解,并计算出每个子频带的能量;通过选择具有最大能量值的特征作为小波基特征,以减少进入支持向量机的样本数目和提高识别准确率;最后,用支持向量机对虹膜特征进行模式匹配.实验结果表明,该方法取得了较好的识别效果. 相似文献
10.
针对经验模态分解在对脑电数据进行处理时存在的端点效应问题,提出了一种新的端点效应抑制方法。该方法将支持向量机和数据加窗进行结合对原始信号进行处理。该方法包括三个步骤:采用支持向量机对原始信号两端分别延拓有限个极大值和极小值;用窗函数对延拓后的数据进行加窗处理;分别对原始信号以及支持向量机延拓和加窗处理后的信号进行经验模态分解,并舍弃各阶固有模态函数中延拓的数据点。为了分析所提方法的性能,以正交性作为量化评价指标对比不同方法的性能。以人工信号和实际脑电信号为实验对象进行的模拟实验表明,相比于其他几种方法,提出的方法可有效抑制经验模态分解处理过程中端点效应问题。 相似文献
11.
语音情感计算引起了国内外广泛的关注,特别是在语音情感特征提取方面做了大量的研究。利用经验模态分解(EMD)方法对情感语音进行处理,得到情感语音的前4阶固有模态函数(IMF),并将前4阶IMF分别通过Hilbert变换得到其瞬时频率和瞬时振幅。提取它们的统计特征,再结合情感语音的声学特征共同组成情感特征向量,并对特征向量做归一化处理。利用支持向量机(SVM)对四种情感语音即生气、高兴、悲伤和平静进行识别。实验结果表明该方法的识别效果较好。 相似文献
12.
人在不同情感下的语音信号其非平稳性尤为明显,传统的MFCC只能反映语音信号的静态特征,经验模态分解能够精细地刻画语音信号的非平稳特性。为提取情感语音的非平稳特征,用经验模态分解将情感语音信号分解为一系列固有模态函数分量,通过Mel滤波器后取其对数能量,进行DCT反变换后得到改进的MFCC作为情感识别的新特征,采用支持向量机对高兴、生气、厌烦和恐惧等四种语音情感识别。仿真实验结果表明:改进的MFCC识别率达到77.17%,在不同的信噪比下,识别率最大可提高3.26%。 相似文献
13.
针对传统支持向量机(SVM)在说话人识别中运算量过大的问题,提出了VQ-MAP和SVM融合的说话人识别系统。它应用仅自适应均值向量的最大后验概率矢量量化过程(VQ-MAP),来得到自适应的说话人模型,用此模型中的参数向量作为支持向量应用于SVM来进行说话人识别。用Matlab进行仿真实验,结果表明,基于VQ-MAP和SVM融合的说话人识别系统大大降低了运算量,SVM训练时间短,且具有较高的识别率。 相似文献
14.
手掌静脉识别是一种新兴的生物特征识别技术,随着时代的进步,在各种安全领域中起着越来越重要的影响和应用。提出了一种改进的手掌静脉图像预处理方法,采用对像素灰度值映射来增强图像中的静脉纹理以去除其他干扰。针对手掌静脉纹理的特征提取和识别,提出了一种基于方向梯度直方图(HOG)与改进的阈值支持向量机(T-SVM)的算法,以更好适应手掌静脉识别的特点。通过大量实验证明,该方法不仅可以较为迅速地进行身份识别,而且达到了较高的识别率。 相似文献
15.
针对近红外光下现有的人眼定位算法普遍存在准确性不高、泛化能力不佳等问题,提出了一种基于方向梯度直方图(HOG)和支持向量机(SVM)相结合的双眼虹膜图像的人眼定位算法。利用HOG提取虹膜图像的人眼特征,并结合SVM分类器对HOG特征进行训练从而实现人眼的精确定位。为了减少漏检和误检,进一步提高定位准确率,又提出了多级级联SVM分类器算法;另外针对近红外光线下虹膜图像独特的灰度分布特点,设计了一种图像预处理方法,能够显著提高人眼定位速度。在MIR2016和CASIA-IRIS-Distance数据集上的实验结果表明,基于HOG和SVM的双眼虹膜图像的人眼定位算法具有高准确率、强泛化能力和高实时性。 相似文献
16.
为了有效地确定滚动轴承的故障类型和受损程度,提出了结合马田系统和SVM的滚动轴承故障模式分类方法。利用EEMD方法对原始振动信号进行分解,得到一系列IMF。经过故障敏感IMF选取方法筛选IMF后计算其时域和频域特征参数以及原始信号的能量熵参数,构造初始的多维特征空间。运用马田系统中的正交表和信噪比进行特征降维,得到精简特征空间。接下来使用偏二叉树方法构建支持向量机多分类模型。通过实验数据进行模型验证,结果表明该方法可以实现滚动轴承故障模式分类。 相似文献
17.
为提高非线性、非平稳心音信号特征提取的准确性和分类识别的高效性,提出一种基于固有模态函数(Intrinsic Mode Function,IMF)复杂度和二叉树支持向量机(Binary Tree Support Vector Machine,BT-SVM)的心音分类识别方法。对心音进行经验模式分解(Empirical Mode Decomposition,EMD),得到若干反映心音本体特征的平稳IMF分量;利用互相关系数准则对其筛选,计算所选IMF分量的复杂度值为信号的特征;将其组成特征向量输入到BT-SVM进行分类识别。临床数据仿真结果表明,该方法能有效提取心音特征,与传统识别方法相比,具有训练时间短,识别率高等优点。 相似文献