首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plane-strain initiation fracture toughness (K JICi ) and plane-stress crack growth resistance of two Al-Cu-Mg-Ag alloy sheets are characterized as a function of temperature by a J-integral method. For AA2519 +Mg+Ag, K JICi decreases from 32.5 MPa√m at 25 °C to 28.5 MPa√m at 175 °C, while K JICi for a lower Cu variant increases from 34.2 MPa√m at 25 °C to 36.0 MPa√m at 150 °C. Crack-tip damage in AA2519+Mg+Ag evolves by nucleation and growth of voids from large undissolved Al2Cu particles, but fracture resistance is controlled by void sheeting coalescence associated with dispersoids. Quantitative fractography, three-dimensional (3-D) reconstruction of fracture surfaces, and metallographic crack profiles indicate that void sheeting is retarded as temperature increases from 25 °C to 150°C, consistent with a rising fracture resistance. Primary microvoids nucleate from smaller constituent particles in the low Cu alloy, and fracture strain increases. A strain-controlled micromechanical model accurately predicts K JICi as a function of temperature, but includes a critical distance parameter (l*) that is not definable a priori. Nearly constant initiation toughness for AA2519+Mg+Ag is due to rising fracture strain with temperature, which balances the effects of decreasing flow strength, work hardening, and elastic modulus on the crack-tip strain distribution. Ambient temperature toughnesses of the low Cu variant are comparable to those of AA2519+Mg+Ag, despite increased fracture strain, because of reduced constituent spacing and l*.  相似文献   

2.
An investigation was conducted into the effects of test temperature and loading rate on the initiation of plane strain fracture of an HY-100 steel. Fracture toughness tests were conducted using fatigue precracked round bars loaded in tension to produce a quasi-static stress intensity rate of ·K1 = 1 MPa√m/s and a dynamic rate of ·K1 = 2 × 106 MPa√m/s. Testing temperatures covered the range from -150 °C to 200 °C, which encompasses fracture initiation modes involving quasi-cleavage to fully ductile fracture. The results of toughness tests show that the lower-shelf values of fracture toughness were substantially independent of loading rate, while the dynamic values exceeded the quasi-static values by about 50 pct on the upper shelf. In analyzing these results, phenomenological fracture initiation models were adopted based on the requirement that, for fracture to occur, a critical strain or stress must be achieved over a critical distance. In separate tests, the observation of microfracture processes was investigated using fractography and anin situ scanning electron microscope (SEM) fracture technique. The layered ppearance of the fracture surfaces was found to be associated with a banded structure which generally contains many MnS inclusions, probably resulting in a reduction of the fracture toughness values.  相似文献   

3.
The dependence of the dynamic plane-strain fracture toughness,K Id, on temperature and crack velocity was measured for propagating cracks in 1020 steel. The dynamics of crack propagation in double-cantilevered specimens was recorded using electroresistivity techniques. The fracture surface energy was found by comparing the crack propagation to solutions of crack motion in wedged-open cantilevered specimens. TheKId behavior was investigated over a range of temperatures from —196° to —50°C and crack velocities of 3 × 10-3 to 5 × 10-2 of √E/p. The rate and temperature dependence ofK Id over the range ofT and υc investigated is well described by:1/K ld 2= υ0 are experimental constants. A dynamic value ofK Id was 70 pct ofK Ic at the same temperature, although in the temperature and crack velocity range investigated the specific fracture surface energy varies by a factor of 6. The temperatureT T =B/A in(υ oc) for which1/K Id 2 = 0 is similar to Charpy impact transition temperature values whenυ c = 3 × 10-3√.E/p. If the plane-strain stress condition could be maintained, thenT T would define a brittle-ductile transition temperature for dynamic plane-strain fracture toughness. The constantsA andB are interpreted by understanding the plastic energy dissipated by a moving crack. Formerly with Brown University, Providence, R. I.  相似文献   

4.
Tensile ductility of extrinsically toughened intermetallics   总被引:1,自引:0,他引:1  
A theoretical analysis based on crack instability is presented to elucidate factors effecting the tensile ductility of intermetallics that are toughened by extrinsic mechanisms and resistance-curve effects. The analytical results indicate that extrinsic-toughening mechanisms are ineffec-tive in imparting tensile ductility in brittle intermetallics. The plastic strain at the onset of un-stable fracture is generally controlled by the initiation toughness,K Ic, except for materials with a high-tearing modulus,T R.The consequence is that tensile ductility increases with the initiation toughness,K Ic, but is unrelated to theK value measured at the peak load or theT Rvalue for materials with low- to intermediate-tearing resistance (e.g., T R <18 forK Ic= 10 MPa√m). Application of the model to a two-phase TiAl alloy reveals good agreement between theory and experiment. This finding indicates that tensile ductility in brittle intermetallics can be imparted more effectively by intrinsic-toughening mechanisms than by extrinsic ones.  相似文献   

5.
Ambient- to elevated-temperature fracture and fatigue-crack growth results are presented for five Mo-Mo3Si-Mo5SiB2-containing α-Mo matrix (17 to 49 vol pct) alloys, which are compared to results for intermetallic-matrix alloys with similar compositions. By increasing the α-Mo volume fraction, ductility, or microstructural coarseness, or by using a continuous α-Mo matrix, it was found that improved fracture and fatigue properties are achieved by promoting the active toughening mechanisms, specifically crack trapping and crack bridging by the α-Mo phase. Crack-initiation fracture toughness values increased from 5 to 12 MPa√m with increasing α-Mo content from 17 to 49 vol pct, and fracture toughness values rose with crack extension, ranging from 8.5 to 21 MPa√m at ambient temperatures. Fatigue thresholds benefited similarly from more α-Mo phase, and the fracture and fatigue resistance was improved for all alloys tested at 1300 °C, the latter effects being attributed to improved ductility of the α-Mo phase at elevated temperatures.  相似文献   

6.
This study investigates fracture resistance of a sintered steel in the temperature range from 25 °C to 300 °C. The temperature-dependent fracture resistance is experimentally determined by fracture toughness tests. The fracture toughness, K IC , decreases from 28.8 at room temperature to 23 MPa√m at 300 °C. The finite element analysis shows an insight of the rationale of using K IC as the parameter to characterize the fracture resistance of porous sintered steel in which the stress intensity (K) field has been severely distorted at the porous crack tip. The analysis indicates that crack onset of sintered steel is controlled by a critical stress mechanism.  相似文献   

7.
Internal hydrogen embrittlement of ultrahigh-strength AERMET 100 steel   总被引:1,自引:0,他引:1  
Near-peak-aged AERMET 100 is susceptible to severe internal hydrogen embrittlement (IHE) at 23 °C, if a sufficient diffusible hydrogen content is present, compromising the high toughness of this ultrahigh-strength steel (UHSS). Evidence includes the threshold stress intensity for subcritical IHE (K TH ) as low as 10 pct of the plane-strain fracture toughness (K IC ) and a fracture-mode transition from microvoid coalescence to brittle transgranular (TG) cracking, apparently along martensite lath interfaces and cleavage planes. The K TH value decreases from a K IC value of 132 to 143 MPa√m to 12 MPa√m, and the amount of brittle TG fracture increases to nearly 100 pct as the concentration of diffusible H increases from essentially 0 to 8 wppm, with severe embrittlement in the 0 to 2 wppm H regime. The IHE is time dependent, as evidenced by increasing K TH values with increasing dK/dt and K-independent subcritical crack growth rates, and is attributed to diffusional H repartition from reversible trap sites to the stressed crack tip. The partition distance is ∼1 μm, consistent with the fine-scale microstructure of AERMET 100. The causes of the susceptibility of AERMET 100 to TG IHE are very high crack-tip stresses and a reservoir of mobile H trapped reversibly at (Fe,Cr,Mo)2C precipitates. These factors enable repartition of H to misoriented martensite lath interfaces and interstitial sites near cleavage planes, with each prone to decohesion along a connected path. Predissolved H also reduces the ductile fracture toughness of AERMET 100 at high loading rates, perhaps due to reduced void growth caused by H trapped strongly at undissolved metal carbides.  相似文献   

8.
The effect of high-pressure hydrogen and temperature on crack growth was studied in wedge-opening-load (WOL) samples of a low-carbon steel. At temperatures above 280 ‡C, a hydrogen pressure of 3 ksi gave an increasing amount of acceleration in crack growth. These conditions approached but were below that needed to give hydrogen attack (HA) in the surrounding matrix. The value ofda/dt increases exponentially with temperature, andQ is roughly equal to that for grain boundary diffusion. The growth is absent atK 1 = 0 but varies little withK 1 above 15 MPa√m. The value ofda/dt increases steadily with hydrogen pressure in the range of 3 to 21 MPa. Formerly Visiting Scholar, The Ohio State University.  相似文献   

9.
The effect of hydrogen on the fracture toughness behavior of a nickel-base superalloy, Alloy X-750, in the solutionized and aged condition was investigated. Notched bend specimens were tested to determine if the fracture process was stress or strain controlled. The fracture was observed to initiate at a distance between the location of maximum stress and maximum strain, suggesting that fracture required both a critical stress and strain. The effect of hydrogen was further investigated and modeled using fracture toughness testing and fractographic examination. The fracture toughness of the non-charged specimen was 147 MPa√m. Charging with hydrogen decreased the fracture toughness, K Ic , to 52 MPa√m at a rapid loading rate and further decreased the toughness to 42 MPa√m for a slow loading rate. This is consistent with the rate-limiting step for the embrittlement process being hydrogen diffusion. The fracture morphology for the hydrogen-charged specimens was intergranular ductile dimple, while the fracture morphology of noncharged specimens was a mixture of large transgranular dimples and fine intergranular dimples. The intergranular failure mechanism in Alloy X-750 was a microvoid initiation process at grain boundary carbides followed by void growth and coalescence. One role of hydrogen was to reduce the void initiation strain for the fine intergranular carbides. Hydrogen may have also increased the rate of void growth. The conditions ahead of a crack satisfy the critical stress criterion at a much lower applied stress intensity factor than for the critical fracture strain criterion. A model based on a critical fracture strain criterion is shown to predict the fracture behavior.  相似文献   

10.
The aqueous environment-assisted cracking (EAC) behavior of two peak-aged beta-titanium alloys was characterized with a fracture mechanics method. Beta-21S is susceptible to EAC under rising load in neutral 3.5 pct NaCl at 25 °C and −600 mVSCE, as indicated by a reduced threshold for subcritical crack growth (K TH ), an average crack growth rate of up to 10 μms, and intergranular fracture compared to microvoid rupture in air. In contrast, the initiation fracture toughness (K ICi ) of Ti-15-3 in moist air is lower than that of Beta-21S at similar high σYS (1300 MPa) but is not degraded by chloride, and cracking is by transgranular microvoid formation. The intergranular EAC susceptibility of Beta-21S correlates with both α-colonies precipitated at β grain boundaries and intense slip localization; however, the causal factor is not defined. Data suggest that both features, and EAC, are promoted by prolonged solution treatment at high temperature. In a hydrogen environment embrittlement (HEE) scenario, crack-tip H could be transported by planar slip bands to strongly binding trap sites and stress/strain concentrations at α colony or β grain boundaries. The EAC in Beta-21S is eliminated by cathodic polarization (to −1000 mVSCE), as well as by static loading for times that otherwise produce rising-load EAC. These beneficial effects could relate to reduced H production at the occluded crack tip during cathodic polarization and to increased crack-tip passive film stability or reduced dislocation transport during deformation at slow crack-tip strain rates. High-strength β-titanium alloys are resistant, but not intrinsically immune to chloride EAC, with processing condition possibly governing fracture. Formerly Graduate Research Associate, University of Virginia Formerly Graduate Research Associate, University of Virginia  相似文献   

11.
The results of a recent study of the effects of ternary alloying with Ti on the fatigue and fracture behavior of a new class of forged damage-tolerant niobium aluminide (Nb3Al-xTi) intermetallics are presented in this article. The alloys studied have the following nominal compositions: Nb-15Al-10Ti (10Ti alloy), Nb-15Al-25Ti (25Ti alloy), and Nb-15Al-40Ti (40Ti alloy). All compositions are quoted in atomic percentages unless stated otherwise. The 10Ti and 25Ti alloys exhibit fracture toughness levels between 10 and 20 MPa√m at room temperature. Fracture in these alloys occurs by brittle cleavage fracture modes. In contrast, a ductile dimpled fracture mode is observed at room-temperature for the alloy containing 40 at. pct Ti. The 40Ti alloy also exhibits exceptional combinations of room-temperature strength (695 to 904 MPa), ductility (4 to 30 pct), fracture toughness (40 to 100 MPa√m), and fatigue crack growth resistance (comparable to Ti-6Al-4V, monolithic Nb, and inconnel 718). The implications of the results are discussed for potential structural applications of the 40Ti alloy in the intermediate-temperature (∼700 °C to 750 °C) regime.  相似文献   

12.
An investigation of stress corrosion crack propagation in Zircaloy is performed at 300 °C in four Pa flowing iodine environment. By varying the orientation of fracture mechanics specimens, the effect of crystallographic texture, heat treatment, and microstructure onK ISCC is studied. Texture is found to have a strong effect on bothK ISCC and the fracture path. As the resolved fraction of basal poles parallel to the direction of crack opening decreases,K ISCC in stress-relieved material increases from 4 MPa√m atf = 0.70 to 17 MPa√m atf = 0.19. The same trend is observed in recrystallized material. However, theK ISCC values are somewhat greater. Transgranular cleavage is the preferred mode of crack propagation. Several ductile modes of separation complement the cleavage process. At high crack velocity, tearing between facets is promoted. At lowK, nearK ISCC, very little tearing is observed and cleavage zones larger than the grain size are common. Fluting is preferred in the low regime. In recrystallized material a transition to completely intergranular failure is observed nearK ISCC.  相似文献   

13.
The effects of changes in test temperature (−196 °C to 25 °C) and grain size (40 to 165 μm) on the dynamic cleavage fracture toughness (K ID ) and Charpy impact toughness of polycrystalline niobium (Nb) have been investigated. The ductile-to-brittle transition was found to be affected by both changes in grain size and the severity of stress concentration (i.e., notch vs fatigue-precrack). In addition to conducting impact tests on notched and fatigue-precracked Charpy specimens, extensive fracture surface analyses have been performed in order to determine the location of apparent cleavage nucleation sites and to rationalize the effects of changes in microstructure and experimental variables on fracture toughness. Existing finite element analyses and the stress field distributions ahead of stress concentrators are used to compare the experimental observations with the predictions of various fracture models. The dynamic cleavage fracture toughness, K ID , was shown to be 37±4 MPa√m and relatively independent of grain size (i.e., 40 to 105 μm) and test temperature over the range −196 °C to 25 °C.  相似文献   

14.
Aluminum-lithium alloys are currently being considered for applications at moderately elevated temperatures; accordingly, a study has been made on the effects of prolonged (100 and 1000 hours overaging) thermal exposure at 149 °C and 260 °C on the mechanical properties of a peakaged Al-Li-Cu-Mg-Zr alloy 8090-T8771. In the as-received T8771 temper, the alloy exhibits an excellent combination of strength (˜500 MPa) and toughness (35 MPa√m) with moderate tensile elongation (4 pct). Overaging at 149 °C results in a ˜50 pct reduction in ductility and toughness, primarily associated with the growth of equilibrium phases along grain/subgrain boundaries, resulting in formation of solute-depleted precipitate-free zones and coarsening of matrix8' andS precipitates; strength levels and fatigue-crack growth rates, however, remain largely unchanged. Thermal exposures at 260 °C, conversely, lead to dramatic reductions in strength (by ˜50 to 80 pct), toughness (by ˜30 pct) and fatigue-crack propagation resistance; crack-growth rates at all ΔK levels above ~5 MPa√m are 2 to 3 orders of magnitude faster. Microstructurally, this was associated with complete dissolution of δ′, severe coarsening ofS andT 2 precipitates in the matrix, and formation of equilibrium Cu- and Mg-rich intermetallic phases in the matrix and along grain boundaries. The resulting lack of planar-slip deformation and low yield strength of 8090 following overaging exposures at 260 °C increase the cumulative crack-tip damage per cycle and reduce the tendency for crack-path deflection, thereby accelerating fatigue-crack growth rates. Despite this degradation in properties, the 8090-T8771 alloy has better strength retention and generally superior fatigue-crack growth properties compared to similarly overaged Al-Li-Cu-Zr 2090 and Al-Cu-Zn-Mg 7150 alloys. formerly with the University of California, formerly with the University of California,  相似文献   

15.
The effects of various thermal treatments,i.e., oil quench and different tempering conditions, on quasi-static and impact fracture toughness, stress-strain characteristics, hardness, and Charpy energy of 5140 H steel were examined. During quasi-static and impact loading notched round tensile specimens were used with a prefatigued crack. A specially designed device together with a pendulum hammer and electronic measuring system was used enabling testing of the opening mode fracture toughness at loading rates up to K1 = 3 x 106 MPa√m per second. It has been found that within the region of the lower tempering temperatures, 500 K≤ 650 K, the critical stress intensity factor KIc determined from impact testing is lower than that obtained during slow loading, whereas at the higher tempering temperatures, 650 K ≤T* ≤ 900 K, dynamic KIu values show a tendency to be higher than their quasi-static counterparts. This behavior was analyzed quantitatively using the Hahn-Rosenfield model which relates tensile properties to fracture toughness. A good agreement was found between quasi-static experimental results and the model. The relation between Charpy energy Kv and the critical stress intensity factor KIc was also evaluated. Changes of the fracture toughness are discussed within the framework of SEM fractographs taken after quasi-static and impact tests. On leave of absence from Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.  相似文献   

16.
Fracture toughness of the lean duplex stainless steel LDX 2101   总被引:1,自引:0,他引:1  
Fracture toughness testing was performed on the recently developed lean duplex stainless steel LDX 2101 (EN 1.4162, UNS S32101). The results were evaluated by master curve analysis, including deriving a reference temperature. The master curve approach, originally developed for ferritic steels, has been used successfully. The reference temperature corresponds to a fracture toughness of 100 MPa√m, which characterizes the onset of cleavage cracking at elastic or elastic-plastic instabilities. The reference temperature, T 0, was −112 °C and −92 °C for the base and weld materials, respectively. In addition, the fracture toughness is compared with impact toughness results. Complementary crack tip opening displacements (CTODs) have also been calculated. The toughness properties found in traditional duplex stainless steels (DSS) are generally good. The current study verifies a high fracture toughness for both base and weld materials and for the low alloyed grade LDX 2101. Even though the fracture toughness was somewhat lower than for duplex stainless steel 2205, it is still sufficiently high for most low-temperature applications.  相似文献   

17.
This paper presents a study of dynamic fracture initiation behavior of 2124-T6 aluminum matrix composites containing 0, 5.2, and 13.2 vol pct SiC whiskers. In the experiment, an explosive charge is detonated to produce a tensile stress wave to initiate the fracture in a modified Kolsky bar (split Hopkinson bar). This stress wave loading provided a stress intensity rate, KI,, of about 2 × 106 MPa√m/s. The recorded data are then analyzed to calculate the critical dynamic stress intensity factor,K Id, of the composite, and the values obtained are compared with the corresponding quasi-static values. The test temperatures in this experiment ranged from −196 °C to 100°C, within which range the fracture initiation mode was found to be mostly ductile in nature. The micromechanical processes involved in void and microcrack formation were investigated using metallographic techniques. As a general trend, experimental results show a lower toughness as the volume fraction of the SiC whisker reinforcement increases. The results also show a higher toughness under dynamic than under static loading. These results are interpreted using a simple dynamic fracture initiation model based on the basic assumption that crack extension initiates at a certain critical strain developed over some microstructurally significant distance. This model enables us to correlate tensile properties and microstructural parameters, as, for instance, the interspacing of the SiC whiskers with the plane strain fracture toughness.  相似文献   

18.
The Kmax-controlled near-threshold fatigue crack growth behavior was investigated on 422 stainless steel in a boiling NaCl solution. During the test, there was a transition from corrosion fatigue to stress corrosion cracking. The transition occurred at very high load ratios (R=-0.91) and at very lowAK levels (≤2.1 MPa√m). The characteristics of stress corrosion cracking (SCC) were manifested by time-based crack growth rather than cycle-based crack growth, by crack extension under static loading, and by change in fracture mode. In corrosive environments, the small ripple loading imposed on structural materials should be recognized for engineering designs and failure analyses.  相似文献   

19.
Constant-amplitude high-cycle fatigue tests (σmax=133 MPa, σmaxy=0.55, and R=0.1) were conducted on cylindrical samples machined from a cast A356-T6 aluminum plate: The fracture surface of the sample with the smallest fatigue-crack nucleating defect was examined using a scanning electron microscope (SEM). For low crack-tip driving forces (fatigue-crack growth rates of da/dN<1 × 10−7 m/cycle), we discovered that a small semicircular surface fatigue crack propagated primarily through the Al-1 pct Si dendrite cells. The silicon particles in the eutectic remained intact and served as barriers at low fatigue-crack propagation rates. When the semicircular fatigue crack inevitably crossed the three-dimensional Al-Si eutectic network, it propagated primarily along the interface between the silicon particles and the Al-1 pct Si matrix. Furthermore, nearly all of the silicon particles were progressively debonded by the fatigue cracks propagating at low rates, with the exception of elongated particles with a major axis perpendicular to the crack plane, which were fractured. As the fatigue crack grew with a high crack-tip driving force (fatigue-crack growth rates of da/dN>1 × 10−6 m/cycle), silicon particles ahead of the crack tip were fractured, and the crack subsequently propagated through the weakest distribution of prefractured particles in the Al-Si eutectic. Only small rounded silicon particles were observed to debond while the fatigue crack grew at high rates. Using fracture-surface markings and fracture mechanics, a macroscopic measure of the maximum critical driving force between particle debonding vs fracture during fatigue-crack growth was calculated to be approximately K max tr ≈6.0 MPa √m for the present cast A356 alloy.  相似文献   

20.
The fracture resistance of a binary TiAl alloy   总被引:6,自引:0,他引:6  
The fracture resistance of a binary Ti-47Al (in at. pct) alloy has been investigated. The binary alloy was cast, forged, and heat treated to a fully lamellar microstructure with a colony size of either 640 or 1425 μm. Fracture toughness tests were performed in a scanning electron microscope (SEM) equipped with a loading stage. Direct observations of the fracture process indicated that crack extension commenced at a stress intensity level of 1.2 to 4 MPa√m. The crack path was primarily interlamellar and crack extension across an individual colony or across similarly oriented colonies was relatively easy. In contrast, crack arrest was prevalent when the crack encountered the boundaries of unfavorably oriented colonies. To extend into an unfavorably oriented neighboring colony, the K level of the approaching crack had to be increased significantly to renucleate a microcrack at a location away from the crack tip, resulting in the formation of an interconnecting ligament that must be fractured to further crack growth. This interaction between the crack and the microstructure led to a large variation in the slope of the K R curves. Comparison of the K R curves for the binary Ti-47Al alloy against published data for quinary Ti-47Al-xNb-yCr-zV alloys indicates that the initiation toughness of the quinary alloys is higher by a factor of 5 to 10, implying the existence of a significant beneficial effect of alloying additions on the initiation toughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号