首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
In the mammalian visual cortex, key neuronal response properties such as orientation preference and ocular dominance (OD) are mapped in an orderly fashion across the cortical surface. It has been known for some time that manipulating early postnatal visual experience can change the appearance of the OD map. Similar evidence for developmental plasticity of the orientation map has been scarce. We employed optical imaging of intrinsic signals to examine the contribution of intrinsic and environmental factors to the development of cortical maps, using the paradigms of strabismus, reverse occlusion and rearing in a single-orientation environment ('stripe-rearing'). For several weeks after induction of strabismus, the pattern of OD domains remained stable in young kittens. The isotropic magnification of the OD map matched the postnatal growth of the visual cortical surface during the same period. In reverse-occluded and in stripe-reared kittens, orientation preference maps obtained through the left and the right eye were very similar, although the two eyes had never shared any visual experience. We suggest that the geometry of functional maps in the visual cortex is intrinsically determined, while the relative strength of representation of different response properties can be modified through visual experience.  相似文献   

2.
We have used optical imaging based on intrinsic signals to explore the functional architecture of owl monkey area MT, a cortical region thought to be involved primarily in visual motion processing. As predicted by previous single-unit reports, we found cortical maps specific for the direction of moving visual stimuli. However, these direction maps were not distributed uniformly across all of area MT. Within the direction-specific regions, the activation produced by stimuli moving in opposite directions overlapped significantly. We also found that stimuli of differing shapes, moving in the same direction, activated different cortical regions within area MT, indicating that direction of motion is not the only parameter according to which area MT of owl monkey is organized. Indeed, we found clear evidence for a robust organization for orientation in area MT. Across all of MT, orientation preference changes smoothly, except at isolated line- or point-shaped discontinuities. Generally, paired regions of opposing direction preference were encompassed within a single orientation domain. The degree of segregation in the orientation maps was 3-5 times that found in direction maps. These results suggest that area MT, like V1 and V2, has a rich and multidimensional functional organization, and that orientation, a shape variable, is one of these dimensions.  相似文献   

3.
The role of experience in the development of the cerebral cortex has long been controversial. Patterned visual experience in the cat begins when the eyes open about a week after birth. Cortical maps for orientation and ocular dominance in the primary visual cortex of cats were found to be present by 2 weeks. Early pattern vision appeared unimportant because these cortical maps developed identically until nearly 3 weeks of age, whether or not the eyes were open. The na?ve maps were powerfully dominated by the contralateral eye, and experience was needed for responses to the other eye to become strong, a process unlikely to be strictly Hebbian. With continued visual deprivation, responses to both eyes deteriorated, with a time course parallel to the well-known critical period of cortical plasticity. The basic structure of cortical maps is therefore innate, but experience is essential for specific features of these maps, as well as for maintaining the responsiveness and selectivity of cortical neurons.  相似文献   

4.
Self-motion or object motion can elicit optokinetic nystagmus (OKN), which is an integral part of dynamic spatial orientation. We used functional MR imaging during horizontal OKN to study cerebral activation patterns in sensory and ocular motor areas in 10 subjects. We found activation bilaterally in the primary visual cortex, the motion-sensitive areas in the occipitotemporal cortex (the middle temporal and medial superior temporal areas), and in areas known to control several types of saccades such as the precentral and posterior median frontal gyrus, the posterior parietal cortex, and the medial part of the superior frontal gyrus (frontal, parietal, and supplementary eye fields). Additionally, we observed cortical activation in the anterior and posterior parts of the insula and in the prefrontal cortex. Bilateral activation of subcortical structures such as the putamen, globus pallidus, caudate nucleus, and the thalamus traced the efferent pathways of OKN down to the brainstem. Functional MRI during OKN revealed a complex cerebral network of sensorimotor cortical and subcortical activation.  相似文献   

5.
INTRODUCTION: Area 17 or the primary visual area forms the first link in the chain of cerebral analysis of a visual image. The neurones forming the primary visual cortex are characterized by the extreme precision of their connections, functional specialization and hierarchic organization. The spatial precision of the connections within the system for vision permit retinotopic representation in the visual cortex, so that each point of the retina is projected into a specific area of the cortex. The cortical neurones which analyze the characteristics of the image situated in a precise zone of the visual field are themselves organized into a basic functional unit known as a hypercolumn. Within each hypercolumn there are various columnar cell systems with receptive fields having similar characteristics. Thus, each hypercolumn is made up of multiple orientation columns, two ocular dominance columns and 'blob' regions. All these systems permit the analysis of different aspects of the image. The neurones belonging to the orientation columns are sensitive to the orientation, spatial frequency and movement of a visual stimulus; those of the 'blob' regions to colour, and the binocular neurones of the ocular dominance columns to depth. Within each column, the hierarchical pattern of neurone interconnections determines the successive appearance of cells with receptive fields having new properties.  相似文献   

6.
The cortical processing of vestibular information is not hierarchically organized as the processing of signals in the visual and auditory modalities. Anatomic and electrophysiological studies in the monkey revealed the existence of multiple interconnected areas in which vestibular signals converge with visual and/or somatosensory inputs. Although recent functional imaging studies using caloric vestibular stimulation (CVS) suggest that vestibular signals in the human cerebral cortex may be similarly distributed, some areas that apparently form essential constituents of the monkey cortical vestibular system have not yet been identified in humans. Galvanic vestibular stimulation (GVS) has been used for almost 200 years for the exploration of the vestibular system. By contrast with CVS, which mediates its effects mainly via the semicircular canals (SCC), GVS has been shown to act equally on SCC and otolith afferents. Because galvanic stimuli can be controlled precisely, GVS is suited ideally for the investigation of the vestibular cortex by means of functional imaging techniques. We studied the brain areas activated by sinusoidal GVS using functional magnetic resonance imaging (fMRI). An adapted set-up including LC filters tuned for resonance at the Larmor frequency protected the volunteers against burns through radio-frequency pickup by the stimulation electrodes. Control experiments ensured that potentially harmful effects or degradation of the functional images did not occur. Six male, right-handed volunteers participated in the study. In all of them, GVS induced clear perceptions of body movement and moderate cutaneous sensations at the electrode sites. Comparison with anatomic data on the primate cortical vestibular system and with imaging studies using somatosensory stimulation indicated that most activation foci could be related to the vestibular component of the stimulus. Activation appeared in the region of the temporo-parietal junction, the central sulcus, and the intraparietal sulcus. These areas may be analogous to areas PIVC, 3aV, and 2v, respectively, which form in the monkey brain, the "inner vestibular circle". Activation also occurred in premotor regions of the frontal lobe. Although undetected in previous imaging-studies using CVS, involvement of these areas could be predicted from anatomic data showing projections from the anterior ventral part of area 6 to the inner vestibular circle and the vestibular nuclei. Using a simple paradigm, we showed that GVS can be implemented safely in the fMRI environment. Manipulating stimulus waveforms and thus the GVS-induced subjective vestibular sensations in future imaging studies may yield further insights into the cortical processing of vestibular signals.  相似文献   

7.
We describe a technique for mapping out human somatosensory cortex using functional magnetic resonance imaging (fMRI). To produce cortical activation, a pneumatic apparatus presented subjects with a periodic series of air puffs in which a sliding window of five locations moved along the ventral surface of the left arm in a proximal-to-distal or distal-to-proximal direction. This approach, in which the phase-delay of the stimulus can be used to produce somatotopic maps of somatosensory cortex, is based on a method used to generate retinotopic maps of visual cortex. Functional images were acquired using an echoplanar 1.5T scanner and a T2*-weighted spiral acquisition pulse sequence. The periodic series of air puffs created phase-related activation in two cortical regions of the contralateral parietal lobe, the posterior bank of the central sulcus and a more posterior and lateral region.  相似文献   

8.
OBJECT: The goal of this study was to evaluate the clinical potential of combining functional magnetic resonance (fMR) imaging with conventional morphological MR imaging and to assess its usefulness for objective evaluation of visual function as part of treatment planning in patients harboring space-occupying lesions involving the posterior afferent visual system. METHODS: It was hypothesized that regional activation of the visual cortex during visual stimulation would show an asymmetric response consistent with the well-known retinotopical organization of the human visual cortex. To test this hypothesis, the pattern of regional cortical activity detected by fMR imaging during binocular repetitive photic stimulation (10 Hz) was compared with the findings of conventional visual field testing. Functional mapping of the visual cortex was performed using a noninvasive blood oxygen level-dependent MR technique in 10 patients with intraaxial and two with extraaxial lesions. Experiments involving two of the patients were unsuccessful because of motion artifacts. In all the remaining patients functional activity was demonstrated in the primary visual area that corresponded to the anatomical location of the calcarine cortex. In nine patients, the identified patterns of activation in the visual cortex were consistent with the visual field deficits (seven homonymous hemianopsias, one homonymous central scotoma, and one inferior quadrantanopsia) and with the traditional teaching of retinotopical representation. Discordance between fMR imaging and perimetric findings was observed in one case. CONCLUSIONS: These results demonstrate that fMR imaging can be performed routinely and successfully in patients with visual abnormalities as part of a conventional neuroradiological evaluation. The technique provides essential information about the function-structure relationship specific to an individual patient and holds promise not only for diagnosis and therapy planning, but also for understanding the topography and functional specialization of the human visual cortex.  相似文献   

9.
We investigated the development of orientation preference maps in the visual cortex of kittens by repeated optical imaging from the same animal. Orientation maps became detectable for the first time around postnatal day (P) 17 and improved continuously in strength unitl P30, the time at which their appearance became adultlike. During this developmental period the overall geometry of the maps remained unchanged, suggesting that the layout of the orientation map is specified prior to P17. Hence, before the visual cortex becomes susceptible to experience-dependent modifications its functional architecture is largely specified. This suggests that the initial development and layout of orientation preference maps are determined by intrinsic processes that are independent of visual experience. This conclusion is further supported by the result that orientation maps were well expressed at P24 in binocularly deprived kittens. Because the appearance of the first orientation-selective neurons and the subsequent development of orientation preference maps correlated well with the time course of the expression and refinement of clustered horizontal connections, we propose that these connections might contribute to the specification of orientation preference maps.  相似文献   

10.
One of the fundamental principles of visual cortical organization is that neurons form a "map" in which neighboring cells have similar orientation preferences. Previous anatomical and imaging studies have shown that although the exact layouts of these orientation preference maps vary between individuals, features of iso-orientation domains such as width and spacing appear constant within a species. Using chronic optical imaging of intrinsic signals we now demonstrate that in ferret area 17 a larger proportion of cortical surface is dominated by responses to horizontal and vertical contours than to the two oblique orientations. This was true for all ferrets studied both during development and in adulthood. Interestingly, however, we found that the degree of the overrepresentation varied significantly between individual animals. In some young ferrets, responses to horizontal and vertical stimuli developed faster than responses to oblique stimuli, and a much larger percentage of the cortex responded preferentially to horizontal and vertical stimuli. In other individuals, responses to all stimuli developed at roughly the same rate, and there was relatively little overrepresentation of horizontal and vertical preferences.  相似文献   

11.
Assigned 43 Long-Evans hooded rats to 7 groups receiving normal, visually restricted, or auditory restricted rearing experience. Ss were then implanted with bipolar pairs of electrodes in the auditory and visual projection areas. Electrical stimulation of the cortex was used as a discriminative stimulus for a lever-pressing response. The ease of using electrical stimulation of visual or auditory cortex as a discriminative stimulus was related to Ss' paranatal sensory experience. Deleterious effects were limited to the restricted cortical projection area, and there were suggestions of facilitated performance in response to stimulation of the nonrestricted cortical areas. These effects were absent when restriction was induced in adulthood. (28 ref.) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
Development of ocular dominance columns is dependent on patterned retinal activity, and yet patterned activity alone cannot explain all aspects of cortical column development. Features intrinsic to the cortex have been proposed to interact with activity to guide the patterning of cortical columns (), and the NMDA receptor, because of its role in experience-dependent plasticity, is an obvious candidate. Using immunohistochemical techniques, we found a transiently patchy distribution of the NMDA receptor 1 (NMDAR1) subunit in kitten visual cortex. Regularly spaced patches of NMDAR1-immunoreactive neurons were found at the top of the cortical plate in the developing visual cortex at 2 weeks of age. At 4-5 weeks of age, the radial extent of the NMDAR1 patches spanned the supragranular layers, and by 12 weeks of age, this nonuniform pattern of NMDAR1 immunostaining was no longer apparent. Monocular visual experience prevented the expression of the NMDAR1 patches, but just 4 d of subsequent binocular visual experience was sufficient to promote expression of the patches. Furthermore, the NMDAR1 patches tended to be associated with the borders of ocular dominance columns. These results suggest that the degree of plasticity associated with NMDA-mediated mechanisms is elevated in local regions across the tangential extent of the visual cortex and that the NMDAR1 patches may participate in sculpting the overall arrangement of visual cortical columns.  相似文献   

13.
[15O]-water PET was performed on 12 patients with structural lesions for localization of the motor (n = 5), language (receptive and expressive; n = 6), and visual cortex (n = 1). All these patients underwent interactive image-guided surgery using an infrared digitizer and intraoperative electrical stimulation mapping for motor, sensory, language, and visual cortex location. MRI-PET coregistration was performed using a surface matching approach that integrated functional information with interactive image guidance during the surgical procedure. An awake craniotomy with motor and sensory intraoperative stimulation was performed using a registered bipolar electrode that was tracked on real-time during the surgical procedure. Intraoperative functional findings were displayed and saved on the registered MRI images. The sites of functional PET activation during the performance of motor, visual and language tasks were then compared to the results of intraoperative cortical stimulation in 11 patients and visual evoked potentials in one. The results of the PET activation studies were concordant with the findings of intraoperative stimulation in all cases. During resection of the structural lesions, intraoperative stimulation was continued in the subcortical pathways, and five patients had positive responses on areas not identified by the functional PET. Furthermore, 3 patients showed transitory changes in function (speech arrest 1, naming difficulty 1, and motor weakness 1) that were reversible after changing the dissection technique or a brain retractor. [15O]-water PET was reliable in identifying the motor, visual, and language cortex. Language-related rCBF increases were highly distributive, although only part of these activations were subjected to intraoperative stimulation. We conclude that [15O]-water PET can be used for preoperative noninvasive identification of functional cortex and may be useful in neurosurgical preplanning. Intraoperative mapping still remains the main means to avoid neurological damage as it can be performed during the entire surgical procedure to avoid damage to cortex, pathways, and damage secondary to ischemia or edema (brain retraction).  相似文献   

14.
Subplate neurons, the first neurons of the cerebral cortex to differentiate and mature, are thought to be essential for the formation of connections between thalamus and cortex, such as the system of ocular dominance columns within layer 4 of visual cortex. To learn more about the requirement for subplate neurons in the formation of thalamocortical connections, we have sought to identify the neurotransmitters and peptides expressed by the specific class of subplate neurons that sends axonal projections into the overlying visual cortex. To label retrogradely subplate neurons, fluorescent latex microspheres were injected into primary visual cortex of postnatal day 28 ferrets, just prior to the onset of ocular dominance column formation. Subsequently, neurons were immunostained with antibodies against glutamate, glutamic acid decarboxylase (GAD-67), parvalbumin, neuropeptide Y (NPY), somatostatin (SRIF), or nitric oxide synthase (NOS). Retrograde labeling results indicate that the majority of subplate neurons projecting into the cortical plate reside in the upper half of the subplate. Combined immunostaining and microsphere labeling reveal that about half of cortically projecting subplate neurons are glutamatergic; most microsphere-labeled subplate neurons do not stain for GAD-67, parvalbumin, NPY, SRIF, or NOS. These observations suggest that subplate neurons can provide a significant glutamatergic synaptic input to the cortical plate, including the neurons of layer 4. If so, excitation from the axons of subplate neurons may be required in addition to that from lateral geniculate nucleus neurons for the activity-dependent synaptic interactions that lead to the formation of ocular dominance columns during development.  相似文献   

15.
In mammalian visual cortex, local connections are ubiquitous, extensively linking adjacent neurons of all types. In this study, optical maps of intrinsic signals and responses from single neurons were obtained from the same region of cat visual cortex while the effectiveness of the local cortical circuitry was altered by focally disinhibiting neurons within a column of known orientation preference. Maps of intrinsic signals indicated that local connections provide strong and functional subthreshold inputs to neighboring columns of other orientation preferences, altering the observed orientation preference to that of the disinhibited column. However, measuring the suprathreshold response using single-cell recordings revealed only mild changes of preferred orientation over the affected region. Because strongly tuned subthreshold inputs from cortex only marginally affect the tuning of a cortical cell's output, it is concluded that local cortical inputs are integrated weakly compared to geniculate inputs. Such circuitry potentially allows for the normalization of responses across a wide range of input activity through local averaging.  相似文献   

16.
The authors used functional magnetic resonance imaging (fMRI) to determine whether acute intravenous (i.v.) cocaine use would change global cerebral blood flow (CBF) or visual stimulation-induced functional activation. They used flow-sensitive alternating inversion recovery (FAIR) scan sequences to measure CBF and blood oxygen level-dependent (BOLD) sensitive T2* scan sequences during visual stimulation to measure neuronal activation before and after cocaine and saline infusions. Cocaine (0.6 mg/kg i.v. over 30 seconds) increased heart rate and mean blood pressure and decreased end tidal carbon dioxide (CO2). All measures returned to baseline by 2 hours, the interinfusion interval, and were unchanged by saline. Flow-sensitive alternating inversion recovery imaging demonstrated that cortical gray matter CBF was unchanged after saline infusion (-2.4 +/- 6.5%) but decreased (-14.1 +/- 8.5%) after cocaine infusion (n = 8, P < 0.01). No decreases were detected in white matter, nor were changes found comparing BOLD signal intensity in cortical gray matter immediately before cocaine infusion with that measured 10 minutes after infusion. Visual stimulation resulted in comparable BOLD signal increases in visual cortex in all conditions (before and after cocaine and saline infusion). Despite a small (14%) but significant decrease in global cortical gray matter CBF after acute cocaine infusion, specific regional increases in BOLD imaging, mediated by neurons, can be measured reliably.  相似文献   

17.
We extend previous models for separate development of ocular dominance and orientation selectivity in cortical layer 4 by exploring conditions permitting combined organization of both properties. These conditions are expressed in terms of functions describing the degree of correlation in the firing of two inputs from the lateral geniculate nucleus (LGN), as a function of their retinotopic separation and their "type" (ON center or OFF center and left eye or right eye). The development of ocular dominance requires that the correlations of an input with other inputs of the same eye be stronger than or equal to its correlations with inputs of the opposite eye and strictly stronger at small retinotopic separations. This must be true after summing correlations with inputs of both center types. The development of orientation-selective simple cells requires that (1) an input's correlations with other inputs of the same center type be stronger than its correlations with inputs of the opposite center type at small retinotopic separation; and (2) this relationship reverse at larger retinotopic separations within an arbor radius (the radius over which LGN cells can project to a common cortical point). This must be true after summing correlations with inputs serving both eyes. For orientations to become matched in the two eyes, correlated activity within the receptive fields must be maximized by specific between-eye alignments of ON and OFF subregions. Thus the correlations between the eyes must differ depending on center type, and this difference must vary with retinotopic separation within an arbor radius. These principles are satisfied by a wide class of correlation functions. Combined development of ocularly matched orientation maps and ocular dominance maps can be achieved either simultaneously or sequentially. In the latter case, the model can produce a correlation between the locations of orientation map singularities and local ocular dominance peaks similar to that observed physiologically. The model's main prediction is that the above correlations should exist among inputs to cortical layer 4 simple cells before vision. In addition, mature simple cells are predicted to have certain relationships between the locations of the ON and OFF subregions of the left and right eyes' receptive fields.  相似文献   

18.
OBJECTIVE: To evaluate stereotactic transcranial magnetic stimulation (TMS) as a tool for presurgical functional mapping of human motor cortex. METHODS: Transcranial magnetic stimulation using a frameless stereotactic system was performed in two patients with tumors near the central sulcus. TMS motor function maps were plotted on the patients' three-dimensional volumetric magnetic resonance imaging data and compared with direct electrical cortical stimulation at surgery with the patient under local anesthesia. RESULTS: Stereotactic TMS was well tolerated by both patients and was consistent with known somatotopic representation of human motor cortex. The results demonstrated a good correlation between the TMS and electrical cortical stimulation maps, with all TMS responses eliciting more than 75% of the maximum motor evoked potential falling within 1 cm of the electrical cortical stimulation site. CONCLUSIONS: Our findings indicate that stereotactic TMS is feasible and can provide accurate noninvasive localization of cortical motor function. It may prove to be a useful method for presurgical planning.  相似文献   

19.
We have developed a three-dimensional silicon electrode array which provides 100 separate channels for neural recording in cortex. The device is manufactured using silicon micromachining techniques, and we have conducted acute recording experiments in cat striate cortex to evaluate the recording capabilities of the array. In a series of five acute experiments, 58.6% of the electrodes in the array were found to be capable of recording visually evoked responses. In the most recent acute study, the average signal-to-noise ratio for recordings obtained from 56 of the electrodes in the array was calculated to be 5.5:1. Using standard window discrimination techniques, an average of 3.4 separable spikes were identified for each of these electrodes. In order to compare the two-dimensional mapping capabilities of the array with those derived from other technologies, orientation preference and ocular dominance maps were generated for each of the evoked responses. Histological evaluation of the implant site indicates some localized tissue insult, but this is likely due to the perfusion procedure since high signal-to-noise ratio neural responses were recorded. The recording capabilities of the Utah Intracortical Electrode Array in combination with the large number of electrodes available for recording make the array a tool well suited for investigations into the parallel processing mechanisms in cortex.  相似文献   

20.
Neural activity plays an important role in the development and maintenance of sensory pathways. However, while there is considerable experience using cochlear implants in both congenitally deaf adults and children, little is known of the effects of a hearing loss on the development of the auditory cortex. In the present study, cortical evoked potentials, field potentials, and multi- and single-unit activity evoked by electrical stimulation of the auditory nerve were used to study the functional organisation of the auditory cortex in the adult congenitally deaf white cat. The absence of click-evoked auditory brainstem responses during the first weeks of life demonstrated that these animals had no auditory experience. Under barbiturate anaesthesia, cortical potentials could be recorded from the contralateral auditory cortex in response to bipolar electrical stimulation of the cochlea in spite of total auditory deprivation. Threshold, morphology and latency of the evoked potentials varied with the location of the recording electrode, with response latency varying from 10 to 20 ms. There was evidence of threshold shifts with site of the cochlear stimulation in accordance with the known cochleotopic organisation of AI. Thresholds also varied with the configuration of the stimulating electrodes in accordance with changes previously observed in normal hearing animals. Single-unit recordings exhibited properties similar to the evoked potentials. Increasing stimulus intensity resulted in an increase in spike rate and a decrease in latency to a minimum of approximately 8 ms, consistent with latencies recorded in AI of previously normal animals (Raggio and Schreiner, 1994). Single-unit thresholds also varied with the configuration of the stimulating electrodes. Strongly driven responses were followed by a suppression of spontaneous activity. Even at saturation intensities the degree of synchronisation was less than observed when recording from auditory brainstem nuclei. Taken together, in these auditory deprived animals basic response properties of the auditory cortex of the congenitally deaf white cat appear similar to those reported in normal hearing animals in response to electrical stimulation of the auditory nerve. In addition, it seems that the auditory cortex retains at least some rudimentary level of cochleotopic organisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号