首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, the CoB catalyst supported on the sepiolite clay treated with phosphoric acid was utilized to produce hydrogen from the NaBH4 hydrolysis. In order to analyse the performance of the phosphoric acid treated sepiolite clay supported-CoB catalyst, the NaBH4 concentration effect, phosphoric acid concentration effect, phosphoric acid impregnation time effect, CoB catalyst percentage effect, and temperature effect were studied. In addition, XRD, XPS, SEM, TEM, BET, and FTIR analysis were performed for characterization of Co–B catalyst supported on the acid-treated sepiolite. The completion time of this hydrolysis reaction with Co–B (20%) catalyst supported on the sepiolite treated by 5 M phosphoric acid was approximately 80 min, whereas the completion time of this hydrolysis reaction with acid-free sepiolite-supported Co–B (20%) catalyst was approximately 260 min. There is a five-fold increase in the maximum production rate. The maximum hydrogen production rates of this hydrolysis reaction at 30 and 60 °C were found as 1486 and 5025 ml min−1g−1catalyst, respectively. Activation energy was found as 21.4 kJ/mol. This result indicates that the acid treatment on sepiolite is quite successful. The re-usability of NaBH4 hydrolysis reaction by CoB catalyst supported on sepiolite treated phosphoric acid for successive five cycles of NaBH4 at 30 °C was investigated.  相似文献   

2.
In the present study, defatted spent coffee ground (DSCG) treated with different acids was used as a metal-free catalyst for the first time. The aim of undertaken work is to demonstrate that DSCG can be used as a green catalyst to produce hydrogen through methanolysis of sodium borohydride. To produce hydrogen by the sodium borohydride methanolysis (NaBH4), DSCG was pretreated with different acids (HNO3, CH3COOH, HCl). According to the superior acid performance, acetic acid was selected and then different concentrations of the chosen acid were evaluated (1M, 3M, 5M, and 7M). Subsewuently, different temperatures (200, 300, 400 and 500 °C) and burning times (30, 45, 60 and 90 min) for the optimization of DSCG-catalyst were tested. The experiments with the use of CH3COOH treated DSCG-catalyst reveal that the optimal acid concentration was 1M CH3COOH and the burning temperatures and time were 300 °C and 60 min, respectively. FTIR, SEM, ICP-MS and CHNS elemental analysis were carried out for a through characterization of the catalyst samples. In this study, the experiments were carried out with 10 ml methanol solution contained 0.025 g NaBH4 with 0.1 g catalyst at 30 °C unless otherwise stated. The effect of NaBH4 concentration was investigated with use of 1%, 2.5%, 5%, and 7.5% NaBH4, while the influence of catalyst concentration was discovered with the use of 0.05, 0.1, 0.15, and 0.25 g catalyst. Different temperatures were chosen (30, 40, 50 and 60 °C) to explore the hydrogen production performance of the catalyst. In addition, the maximum hydrogen production rate through methanolysis reaction of NaBH4 by this catalyst was found to be 3171.4 mL min−1gcat−1. Also, the activation energy was determined to be 25.23 kJ mol−1.  相似文献   

3.
《Journal of power sources》2006,157(1):104-113
This paper presents a comprehensive study of hydrogen production from sodium borohydride (NaBH4), which is synthesized from sodium tetraborate (Na2B4O7) decomposition, for proton exchange membrane (PEM) fuel cells. For this purpose, Na2B4O7 decomposition reaction at 450–500 °C under hydrogen atmosphere and NaBH4 decomposition reaction at 25–40 °C under atmospheric pressure are selected as a common temperature range in practice, and the inlet molar quantities of Na2B4O7 are chosen from 1 to 6 mol with 0.5 mol interval as well. In order to form NaBH4 solution with 7.5 wt.% NaBH4, 1 wt.% NaOH, 91.5 wt.% H2O, the molar quantities of NaBH4 are determined. For a PEM fuel cell operation, the required hydrogen production rates are estimated depending on 60, 65, 70 and 75 g of catalyst used in the NaBH4 solution at 25, 32.5 and 40 °C, respectively. It is concluded that the highest rate of hydrogen production per unit area from NaBH4 solution at 40 °C is found to be 3.834 × 10−5 g H2 s−1 cm−2 for 75 g catalyst. Utilizing 80% of this hydrogen production, the maximum amounts of power generation from a PEM fuel cell per unit area at 80 °C under 5 atm are estimated as 1.121 W cm−2 for 0.016 cm by utilizing hydrogen from 75 g catalyst assisted NaBH4 solution at 40 °C.  相似文献   

4.
Poly[2-(dimethylamino)ethyl methacrylate] cryogel beads were prepared under cryogenic conditions via free radical polymerization and used as a catalyst in the production hydrogen (H2) from NaBH4 by alcoholysis. The efficiency of the catalyst was investigated in the range of 0–40 °C by both methanolysis and ethylene glycolysis reactions, and its reuse was tested. Accordingly, it was observed that the methanolysis reaction was faster than the ethylene glycolysis reaction. When the hydrogen generation rate (HGR) values between 0 and 40 °C were compared, it was concluded that the methanolysis reaction rate increased from 1550 to 4800 mL.min−1g−1 and the ethylene glycolysis reaction rate increased from 923 to 3551 mL.min−1g−1. In the alcoholysis reaction catalyzed by PDMA cryogel beads, the activation energy was calculated as 19.34 and 22.77 kJ.mol−1 for the methanolysis and ethylene glycolysis reactions, respectively. After six repetitions, the catalyst activity was calculated over 50% for NaBH4 methanolysis and ethylene glycolysis.  相似文献   

5.
In this study, organic waste sources (spent coffee ground (SCG)) is used as metal-free catalyst in comparison with conventional noble-metal catalyst materials for hydrogen generation based on the methanolysis of sodium borohydride solution. Spent coffee ground (SCG) is used as a metal-free catalyst for the first time as treated with different chemicals. The aim is to synthesize the metal-free catalyst that can be used for the production of hydrogen, a renewable energy source. SCG, which was collected from coffee shops, was used for preparing the catalyst. To produce hydrogen by sodium borohydride (NaBH4) methanolysis, SCG is pretreated with different chemical agents (H3PO4, KOH, ZnCl2). According to the acid performances, the choice of phosphoric acid was evaluated at different mixing ratios (10%, 20%, 30%, 40%, 50%, 100%) (w/w), different temperatures (200, 300 and 400 °C) and burning times (30, 45, 60 and 90 min) for the optimization of SCG-catalyst. A detailed characterization of the samples were carried out with the aid of FTIR, SEM, XRD and BET analysis. In this study, the experiments were generally carried out effectively under ambient temperature conditions in10 ml methanol solution containing 0.025 g NaBH4 and 0.1 g of the catalyst. The hydrogen obtained in the experimental studies was determined volumetrically by the gas measurement system. When evaluating the hydrogen volume, different NaBH4 concentrations, catalyst amount and different temperature effects were investigated. The effect of the amount of NaBH4 was investigated with 1%, 2.5%, 5%, and 7.5% ratio of NaBH4 while the influence of the concentration of catalyst was carried-out at 0.05, 0.1, 0.15, and 0.25 g catalysts. Four different temperatures were tested (20, 30, 40, 50 and 60 °C) to explore the performance of the catalyst under different temperatures. The experiments by using SCG-catalyst treated with H3PO4 reveal that the best acid ratio was 100% H3PO4. The maximum hydrogen production rate with the use of SCG-catalyst for the methanolysis of NaBH4 was found to be 8335.5 mL min−1gcat−1. Also, the activation energy was determined to be 9.81 kJ mol−1. Moreover, it was discovered that there was no decline in the percentage of converted catalyst material.  相似文献   

6.
In this study, orange peel (OP), one of the organic wastes, was first used as a metal-free catalyst for the production of hydrogen from sodium boron hydride (NaBH4). In order to prepare an orange peel catalyst (OP–H3PO4-Cat) with the best catalytic activity, experiments were carried out on pure orange peel with different acid types, different burning temperatures and different burning times. As a result of these experiments, it was determined that OP-H3PO4-Cat treated with 30% H3PO4 and burned at 400 °C for 45 min had the best catalytic activity. The OP-H3PO4-Cat material was characterised by several techniques such as FTIR, XRD and SEM. As a result, the hydrogen generation rates (HGR) at 30 °C and 60 °C in the methanolysis reaction of 2.5% NaBH4 catalysed by OP-H3PO4-Cat were found as 45,244 and 61,892 mLmin?1g.cat?1, respectively. The activation energy of OP-H3PO4-Cat catalyst was calculated as 12.47 kJmol-1.  相似文献   

7.
Cellulose cotton fibers (CF) are coated with chitosan (CH) by simple, economic, and environmental friendly method. The CFs are kept in aqueous acetic acid solution to protonate the fibers before coated with CH solution (1.5% w/v in acetic acid aqueous solution (20% v/v)), represented as CF-A-CH. These materials are characterized by ATR-FTIR, XRD, FE-SEM and EDS which shows the successful coating of the CH on the CF surface. The prepared materials are exploited as an effective catalyst for the production of hydrogen (H2) from NaBH4 methanolysis reaction. In addition, other polymers (gelatin and agarose) and surfactants (brij-56, pluronic F-127 and urea) as well as CH in solution form are testified as catalyst for NaBH4 methanolysis reaction. High generation rate (8 times) and increase in amount of H2 (150 mL) is observe using only 50 μL CH solution. Furthermore, influences of various constraints, which affect the H2 production, like catalyst types, catalyst amount, NaBH4 amount, effect of temperature are also explored. A low activation energy (Ea), almost 14.41 ± 0.46 kJ mol−1 is calculated for NaBH4 methanolysis reaction in presence of CF-A-CH at temperature range 0 °C - 45 °C. Moreover, the catalyst reusability is also analyzed and no decline in percent conversion is found, whereas a little reduction in percent performance is detected after every cycle and only 18% lost is observed in its percent activity after completion of five successive cycles.  相似文献   

8.
In this study, Microcystis Aeruginosa (MA)- microalgae species was used for the first time as a support material with metal ions loading to fabricate a highly efficient catalyst for the hydrogen generation through methanolysis of sodium borohydride (NaBH4). Microalgae was pre-treated with hydrochloric acid (3 M HCl) for 24 h at 80 °C. Subsequently, different metal ions (Mn, Co, and Mo) were loaded to the pre-treated samples. Finally, metal-loaded samples were subjected to burning in oven to fabricate the catalyst. Primarily, manganese metal was selected based on the best metal performance. Afterwards, different metal loading ratios, burning temperatures and burning times were evaluated to synthesize the optimal MA-HCl-Mn catalyst. Results showed the optimal conditions as Mn ratio, burning temperature and time as 50%, 500 °C and 45 min, respectively. To characterize the catalyst, FTIR, SEM-EDX, XRD, XPS and TEM analyses were performed. Hydrogen generation via methanolysis was performed at various NaBH4 ratio of 1–7.5% while changing concentrations from 0.05 to 0.25 g catalysts with diverge temperatures of (30, 40, 50 and 60 °C). The maximum hydrogen generation rate (HGR) by this novel catalyst was found as 4335.3, 5949.9, 7649.4 and 8758.9 mLmin−1gcat−1, respectively. Furthermore, the activation energy was determined to be 8.46 kJ mol−1.  相似文献   

9.
In the present paper, the blast furnace slag (BFS) supported Co-B catalyst were investigated in detail. The impregnation-chemical reduction method was used while hydrochloric (HCl) acid treated BFS samples (BFS+) were prepared. Catalyst samples were analyzed in three main groups as base BFS (BFS0), BFS0-Co-B and BFS+-Co-B. The effects of these catalyst samples on hydrogen production from the solid-state sodium boron hydride (NaBH4) are analyzed in this study. The effects of some parameters such as the ingredients of blast furnace slag, the molarity of hydrochloric acid treatment, the Co percentages and the solution temperatures were investigated on the hydrolysis performance of NaBH4. The NaBH4 hydrolysis reaction with the BFS0 is treated by the BFS+-Co-B-20% catalyst was completed approximately 25 min and the hydrolysis reaction with the BFS0-Co-B-20% catalyst was completed approximately 20 min whereas the hydrolysis reaction of NaBH4 was completed in 1 h 35 min. The hydrogen production rates at pre-heated to max 40, 50 and 60 °C were measured as 55.12, 64.47 and 70.41 L/min.gcatalyst, respectively. According to another result of the study, the high-efficiency solid-state BFS-Co-B & NaBH4 mixtures were covered with the PVA (Polyvinyl alcohol) film to make them more resistant to environmental effects such as humidity.  相似文献   

10.
Ru-Co nanoparticles prepared in nano-size by combustion derived of citric acid used sol-gel technique followed by calcination process at 450 °C. The external and internal properties of nano-sized catalyst were characterized by XRD, XPS, SEM, TEM, ICP-OES, and N2 sorption techniques. The characterization results proved that nano-sized catalyst was mixture of cubic Co3O4 (18 nm) and tetragonal RuO2 (40 nm) crystals with mesoporous structure (12.64 m2g-1). Insight into the role of solvents for enhancing hydrogen production from Ru-Co nanoparticles catalyzed sodium borohydride (NaBH4, SBH) was systematically studied by altering the dehydrogenation medium with water or methanol. The reaction kinetic performance of nano-sized catalyst was evaluated by performing both hydrogen generation reactions at various reaction temperatures, initial SBH concentration, and catalyst dosage to evaluate the hydrogen generation activity. Ru-Co nanoparticles exhibited exclusive catalytic performance for hydrogen generation by hydrolysis and methanolysis of SBH. The apparent activation energies (Ea) for the catalytic hydrolysis and methanolysis of SBH over Ru-Co nanoparticles were determined to be 20.02 kJ mol−1 and 54.38 kJ mol−1, respectively. Furthermore, Ru-Co nanoparticles also performed satisfied stability for both hydrolysis and methanolysis reactions. Beside both hydrogen generation was achived with fully conversion of SBH, Ru-Co nanoparticles promised good recyclability for at least 5 cycle for methanolysis of SBH.  相似文献   

11.
The introduction of magnetism into a catalyst can greatly optimize its separation performance. In the present work, a kind of magnetically separable catalysts for promoting NaBH4 hydrolysis have been fabricated by anchoring cobalt nanoparticles on magnetic dendritic KCC-1 nanospheres composed of magnetic Fe3O4 core and fibrous shell. The fabricated catalysts were characterized with various characterization methods, including absorption spectroscopy (AAS), scanning electron microscopy (SEM), high-resolution transmission electronic microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM), and Fourier transform infrared (FT-IR), etc. This kind of catalysts exhibit high catalytic activity for promoting the hydrolysis of NaBH4 under alkaline conditions, giving a hydrogen generation rate and activation energy of 3.83 L min−1 gCo−1 (30 °C) and 53.63 kJ mol−1, respectively. After used for 5 cycles, the catalyst showed 36.5% catalytic activity reserved. Most importantly, the magnetism of the catalyst made it easily separated and recycled from the solution after the reaction completed. The development of this kind of catalysts could provide a promising option for catalyzing NaBH4 hydrolysis for portable hydrogen production from.  相似文献   

12.
Water beads made from polyacrylamide polymer p-(AAm) were decorated with high efficient metal nanoparticles by inexpensive, fast, simple, and environmental friendly method. These water beads balls were kept in the metal salt solutions for 4 h; to adsorb the metals ions from these aqueous solutions. The metal ions decorated on the p-(AAm) water beads were converted to metal nanoparticles by its reduction with aqueous solution of NaBH4. The prepared materials p-(AAm) loaded with MNPs (M@p-(AAm)) were characterized by ATR-FTIR, XRD, XPS, FESEM, and EDS which show the successful preparation of MNPs over the surface and within p-(AAm). Afterwards the M@p-(AAm) were investigated as a catalyst for the generation of hydrogen from the methanolysis of NaBH4. The Ag@p-(AAm) show good catalytic activity for NaBH4 methanolysis reaction as compared to the other loaded MNPs. In addition, different parameters which effecting H2 generation were also investigated such as; MNPs types, catalyst amount and temperature of the reaction. Low activation energy (Ea) of 21.37 ± 0.67 kJ mol−1, was calculated for NaBH4 methanolysis reaction at temperature ranging from 5.0 °C to 35 °C. Moreover, the catalyst reusability was also studied and found no decrease in percent conversion, however percent efficiency was decreases about 37% after completion of four cycles.  相似文献   

13.
Dimethyl ether (DME) partial oxidation (PO) was studied over 1 wt% Rh/Ce0.75Zr0.25O2 catalyst at temperatures 300–700 °C, O2:C molar ratio of 0.25 and GHSV 10000 h−1. The catalyst was active and stable under reaction conditions. Complete conversion of DME was reached at 500 °C, but equilibrium product distribution was observed only at T ≥ 650 °C. High concentration of CH4 and low contents of CO and H2 were observed at 500–625 °C 75 cm3 of composite catalyst 0.24 wt% Rh/Ce0.75Zr0.25O2/Al2O3/FeCrAl showed excellent catalytic performance in DME PO at O2:C molar ratio of 0.29 and inlet temperature 840 °C which corresponded to carbon-free region. 100% DME conversion was reached at GHSV of 45,000 h−1. The produced syngas contained (vol. %): 33.4 H2, 34.8 N2, 22.7 CO, 3.6 CO2 and 1.6 CH4. Composite catalyst demonstrated the specific syngas productivity (based on CO and H2) in DME PO of 42.8 m3·Lcat−1·h−1 (STP) and the syngas productivity of more than 3 m3·h−1 (STP) that was sufficient for 3 kWe SOFC feeding. PO of natural gas and liquified petroleum gas can be carried out over the same catalyst with similar productivity, realizing the concept of multifuel hydrogen generation. The syngas composition obtained via DME PO was shown to be sufficient for YSZ-based SOFC feeding.  相似文献   

14.
The natural, most abundant sulfide mineral of pyrite was modified using polyethyleneimine (PEI) for use as a catalyst in H2 release reactions from NaBH4 in methanol. The catalytic performances of pyrite, pyrite-PEI, and protonated pyrite-PEI (pyrite-PEI+) were compared and the hydrogen generation rate (HGR) values of 795 ± 26, 2883 ± 190, and 4320 ± 188 mL H2/(g of catalyst x min)−1 were measured for H2 production from NaBH4 methanolysis. The effect of methanol:water mixture at various ratios, the amount of catalyst, the concentration of NaBH4, and temperature on H2 production from NaBH4 in methanol catalyzed by pyrite-PEI+ were investigated. The activation energies for pyrite-PEI, and pyrite-PEI+ catalyzed H2 release reactions were calculated as 47.2 and 36.8 kJ/mol, respectively. It was found that the activity % for the pyrite-PEI+ catalyst decreased to 76.2 ± 2.7% after five consecutive uses with 100% conversion for each re-use study. Furthermore, the re-generation of pyrite-PEI+ catalyst after the 5th usage was readily ensured by HCl treatment to completely recover and further increase the activity% of the catalyst. Therefore, pyrite was shown to be a useful re-generable and economic green catalyst for H2 production in many potential applications.  相似文献   

15.
The development of efficient and non-noble catalyst is of great significance to hydrogen generation techniques. Three surface-oxidized cobalt borides of Co–B–O@CoxB (x = 0.5, 1 and 2) have been synthesized that can functionalize as active catalysts in both alkaline water electrolysis and the hydrolysis of sodium borohydride (NaBH4) solution. It is discovered that oxidation layer and low boron content favor the oxygen evolution reaction (OER) activity of Co–B–O@CoxB in alkaline water electrolysis. And surface-oxidized cobalt boride with low boron content is more active toward hydrolysis of NaBH4 solution. An alkaline electrolyzer fabricated using the optimized electrodes of Co–B–O@CoB2/Ni as cathode and Co–B–O@Co2B/Ni as anode can deliver current density of 10 mA cm−2 at 1.54 V for overall water splitting with satisfactory stability. Meanwhile, Co–B–O@Co2B affords the highest hydrogen generation rate of 3.85 L min−1 g−1 for hydrolysis of NaBH4 at 25 °C.  相似文献   

16.
This paper reports the experimental results on using TiO2 based Cu(II)-Schiff Base complex catalyst for hydrolysis of NaBH4. In the presence of Cu-Schiff Base complex which we reported in advance [1] and with titanium dioxide supports a novel catalyst named TiO2 supported 4-4′-Methylenbis (2,6-diethyl)aniline-3,5-di-tert-buthylsalisylaldimine-Cu complex is prepared, successfully. The synthesized catalyst was characterized by means of X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller Surface Area Analysis (BET) and Fourier Transform Infrared Spectroscopy (FT-IR). The as prepared catalyst was employed to generate hydrogen through hydrolysis reaction of NaBH4. Effects of different parameters (e.g. amount of Cu-Schiff Base complex in all catalyst, percentage of NaBH4, percentage of NaOH, amount of TiO2 supported Cu-Schiff Base complex catalyst and different temperatures) are also investigated. A high apparent activation energy (Ea), 25,196 kJ.mol-1 is calculated for hydrolysis of NaBH4 at 20–50 °C. Hydrogen generation rate was 14,020 mL H2/gcat.min and 22,071 mL H2/gcat.min in order of 30 °C and 50 °C.  相似文献   

17.
Hydrogen is expected to play an important role as an energy carrier in the world's future energy systems, as it is environmentally friendly and flexible in use. Hydrolysis of NaBH4 is a promising and effective method, especially for fuel cells and other portable devices, thanks to hydrogen release. Therefore, catalyst research is of great importance in the development of this technology. In this study, Ni/Dolomite catalyst was synthesized by wet impregnation method and used in hydrolysis process. Additionally, the effects of reaction temperature (30–60 °C), nickel content (10–40 wt%), catalyst amount (25–125 mg), NaOH concentration (0.10–0.75 M), and an initial amount of NaBH4 (25–125 mg) on hydrogen yield were investigated. Eventually, the catalyst with 40 wt% Ni content was assigned as the most suitable catalyst, attaining H2 production of 100% with a rate of 88.16 mL H2/gcat.min at 60 °C with 5 mL of 0.25 M NaOH, NaBH4, and Ni/Dolomite catalyst (100 mg).  相似文献   

18.
Electrospun nanofibers are prepared through electrospinning followed by post-treatment and preferred to use in catalytic applications. The electrospinning provides advantages for active catalysts design based on activity profiles and features of catalyst. In the present study, we fabricated nano-crystalline cobalt oxide (Co3O4) catalyst by electrospinning technique followed by thermal conditioning. Polyacrylonitrile (PAN) based Co as-spun mats (Co/NMs) with homogeneous diameter were prepared by electrospinnig process under several conditions as applied voltage (15–25 kV), working distance (5–7.5 cm) with the feed rate of 1 ml min−1. The calcination process as a post-treatment was applied at different temperatures (232 °C, 289 °C and 450 °C) to obtain electrospun nano-crystalline Co3O4 catalyst. Co/NMs catalysts were characterized by XRD, SEM, TEM, XPS, FT-IR, TG/DTG, and ICP-MS techniques. The parametrically study was performed for evaluating the hydrogen production activity of catalyst from sodium borohydride (NaBH4, SBH) and its originated compounds as ammonia borane (NH3BH3, AB) and methyl-amine borane (CH3NH2BH3, MeAB). The relation between the internal-external properties and catalytic activities of catalysts for hydrogen production was investigated. The beadless Co/NMs-1 catalyst with homogeneous diameter was obtained under electrospinnig process conditions at 15 kV applied voltage and 7.5 cm working distance. All catalysts showed activity for hydrogen production, also the significant effect of post treatment process was observed on the catalytic activity as given order: Co/NMs-1450 > Co/NMs-1289 > Co/NMs-1 > Co/NMs-1232. Furthermore, mesoporous Co3O4 cubic crystals (26 nm) in fibrous architecture was prepared by 450 °C-post-treatment. Hydrogen production rates were recorded at 60 °C as 2.08, 2.20, and 6.39 l H2.gcat−1min−1 for NaBH4, CH3NH2BH3, and NH3BH3, respectively.  相似文献   

19.
In recent years, catalytic hydrolysis of sodium borohydride is considered to be a promising approach for hydrogen generation towards fuel cell devices, and highly efficient and noble-metal-free catalysts have attracted increasing attention. In our present work, Co3O4 nanocubes are synthesized by solvothermal method, and then vapor-phase phosphorization treatment is carried out for the preparation of novel Co−O−P composite nanocatalysts composed of multiple active centers including Co, CoO, and Co2P. For catalyst characterization, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and X-ray photoelectric spectroscopy (XPS) are conducted. Optimal conditions for catalyst preparation and application were investigated in detail. At room temperature (25 °C), maximum hydrogen generation rate (HGR) is measured to be 4.85 L min−1 g−1 using a 4 wt% NaBH4 − 8 wt% NaOH solution, which is much higher than that of conventional catalysts with single component reported in literature. It is found that HGR remarkably increases with the increasing of reaction temperature, and apparent activation energy for catalytic hydrolysis of NaBH4 is calculated to be 63 kJ mol−1. After reusing for five times, the Co−O−P composite nanocatalysts still retains 78% of the initial activity.  相似文献   

20.
CH3OH steam reforming is an attractive way to produce hydrogen with high efficiency. In this study, CuO.xAl2O3 (x = 1, 2, 3, and 4) were fabricated based on the solid-state route, and the calcined samples were employed in methanol steam reforming at atmospheric pressure and in the temperature range of 200–450 °C. The results revealed that all samples have a high BET area (173–275 m2 g−1), and their crystallinity was reduced by increasing the alumina content in the catalyst formulation. The catalytic activity tests showed that the CH3OH conversion and H2 selectivity decreased by rising the Al2O3·CuO molar ratio. The methanol conversion enhanced from 13% to 85% by increasing the reaction temperature from 200 °C to 450 °C over the CuO·Al2O3 catalyst, due to the higher reducibility of this catalyst at lower temperatures compared to other prepared samples. The influence of calcination temperature (300–500 °C), GHSV (28,000–48000 ml h−1. g−1cat), feed ratio (C:W = 1:1 to 1:9), and reduction temperature (250–450 °C) was also determined on the yield of the chosen sample. The results revealed that the maximum methanol conversion decreased from 90 to 79% by raising the calcination temperature from 300 to 500 °C due to the reduction of surface area and sintering of species at high calcination temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号