首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper explores the hydrogen cycling properties of Mg/Cr and Mg/V multilayer thin films and studies the effect of chromium and vanadium transition metal catalysts on the cycling properties of thick magnesium coatings. Two transition-metal catalysed magnesium-based multilayer PVD coatings are compared with a non-catalysed magnesium control sample. The (micro-)structural evolution of the thin film coatings into fine, flakey powders is studied in-depth using XRD, SEM and TEM and the hydrogen storage properties of all three materials are assessed using volumetric, gravimetric and calorimetric methods focussing on the effect of the microstructure and composition of the coatings on the hydrogen storage kinetics. It was found that the chromium-catalysed coating had the most favourable hydrogen storage kinetics with an activation energy for the dehydrogenation reaction of 65.7 ± 2.5 kJ mol−1 and a hydrogen capacity of 6.1 ± 0.3 wt%. The mechanism of the dehydrogenation reaction of the catalysed samples was studied using the CV and JMAK kinetic models and it was found that the catalyst material influenced not only the hydrogen storage kinetics but also the mechanism of the reaction.  相似文献   

2.
Li dispersed graphene with Stone–Wales (SW) defects was investigated for geometric stability and hydrogen storage capability using density functional theory (DFT) calculations. When the graphene with SW defects, which has the internal strain derived from rotated C–C bond, adsorbs Li adatoms, the strain is relieved by generating the buckling of graphene. This effect plays a crucial role in enhancing the binding energy (Eb) of Li adatoms, consequently allowing the atomic dispersion of Li adatoms on the graphene without clustering. The Li dispersed graphene with SW defects can accommodate four H2 molecules with the range of 0.20–0.35 eV. This falls in a desirable range for feasible applications under ambient conditions. It is therefore anticipated that Li dispersed graphene with SW defects may be an ideal hydrogen storage media due to its geometric stability and high hydrogen storage capacity.  相似文献   

3.
Hydrogen storage properties of Li-decorated graphene oxides containing epoxy and hydroxyl groups are studied by using density functional theory. The Li atoms form Li4O/Li3OH clusters and are anchored strongly on the graphene surface with binding energies of −3.20 and −2.84 eV. The clusters transfer electrons to the graphene substrate, and the Li atoms exist as Li+ cations with strong adsorption ability for H2 molecules. Each Li atom can adsorb at least 2H2 molecules with adsorption energies greater than −0.20 eV/H2. The hydrogen storage properties of Li-decorated graphene at different oxidation degrees are studied. The computations show that the adsorption energy of H2 is −0.22 eV/H2 and the hydrogen storage capacity is 6.04 wt% at the oxidation ratio O/C = 1/16. When the O/C ratio is 1:8, the storage capacity reaches 10.26 wt% and the adsorption energy is −0.15 eV/H2. These results suggest that reversible hydrogen storage with high recycling capacities at ambient temperature can be realized through light-metal decoration on reduced graphene oxides.  相似文献   

4.
Hydrogen storage is a crucial technology for the realization of a carbon-neutral society. However, few materials have been able to approach useful hydrogen storage capacity at reasonable temperatures and pressures. Graphene has an extremely high surface-area-to-weight ratio, is strong, cheap, chemically inert, and environmentally benign. As such it may be an ideal substrate for hydrogen storage. Here we present synthesis of graphene foam by combustion of sodium ethoxide. This technique is low-cost, scalable, and results in a three-dimensional graphene network with a surface area of more than 1200 m2/g. It is applied as a hydrogen storage material at liquid nitrogen temperature, with a capacity of 2.1 wt%.  相似文献   

5.
This paper investigates the decoration of superalkali NLi4 on graphene and the hydrogen storage properties by using first principles calculations. The results show that the NLi4 units can be stably anchored on graphene while the Li atoms are strongly bound together in the superalkali clusters. Decoration using the superalkali clusters not only solve the aggregation of metal atoms, it also provide more adsorption sites for hydrogen. Each NLi4 unit can adsorb up to 10 H2 molecules, and the NLi4 decorated graphene can reach a hydrogen storage capacity 10.75 wt% with an average adsorption energy ?0.21 eV/H2. We also compute the zero-point energies and the entropy change upon adsorption based on the harmonic frequencies. After considering the entropy effect, the adsorption strengths fall in the ideal window for reversible hydrogen storage at ambient temperatures. So NLi4 decorated graphene can be promising hydrogen storage material with high reversible storage capacities.  相似文献   

6.
Density functional theory and molecular dynamics were used to study the interaction of a lithium atom with a vacancy inside a graphene layer. It was found that the lithium atom is adsorbed on this vacancy, with a binding energy much larger than the lithium cohesive energy. Then, the adsorption of hydrogen molecules around lithium atoms was studied. We found that at 300 K and atmospheric pressure, this system could store up to 6.2 wt.% hydrogen, with average adsorption energy of 0.19 eV per molecule. Thus, this material satisfies the gravimetric capacity requirements for technological applications. A complete desorption of hydrogen occurs at 750 K. However, a multilayer of this system would be required for practical reasons. Under atmospheric pressure and at 300 K, we found that a system made of multiple layers of this material is stable. The storage capacity remained at 6.2 wt.%, but all adsorbed molecules were dissociated. The average adsorption energy becomes 0.875 eV/H.  相似文献   

7.
The hydrogen storage capacities of nanoporous carbons, simulated as graphene slit-shaped pores, have been calculated using simple theoretical methods that do not involve computationally expensive calculations. The theoretical methods calculate the storage of hydrogen molecules on a solid porous material by using the Equation Of State, EOS, of the hydrogen gas and the interaction potential energy of H2 with the surfaces of the pores of the material. Calculations have been carried out using the same interaction potential energy and empirical EOS. The interaction potential energy is obtained from calculations of H2 on graphene, using a DFT-based method that includes the dispersion interactions. The storage capacities have been calculated as a function of pressure in the range 0.1–25 MPa, of pore width in the range 4.7–20 Å and at 80.15 and 298.15 K. The storage capacities obtained with the methods are compared and the advantages and limitations of the methods are discussed, as well as the storage capacities predicted by the methods for wide pores. These simple theoretical methods are useful to design novel materials for hydrogen storage.  相似文献   

8.
The exploitation of solid hydrogen storage materials is an important part of the large-scale application of hydrogen energy. However, Metal agglomeration is one of the main reasons that restrict the hydrogen storage performance of carbon-based hydrogen storage materials. Herein, we develop Ti-decorated boron doped porous graphene as a novel hydrogen storage material based on first-principles calculations. The geometry and electronic structure of Ti-decorated porous graphene with and without boron doped are calculated. Doping boron in porous graphene (PG) can significantly increase the metal-substrate interaction and prevents the formation of Ti-metal clusters. The Ti atom-decorated boron-doped porous graphene (Ti–B/PG) system can stably adsorb sixteen hydrogen molecules with a gravimetric hydrogen uptake of 8.58 wt%. The thermodynamic calculations prove a high usable capacity of the material, at the adsorbing and desorbing conditions of 25 °C, 30 atm and 100 °C, 3 atm. The excellent hydrogen capacity, good recyclability, and desirable desorption capacity of Ti–B/PG make it a very prospective material for hydrogen storage.  相似文献   

9.
The graphene nanosheets are synthesized by modified Hummer's method, based on which the dual active metals Ni and Al doped graphene composites are prepared through in-suit reaction and self-assembly with high-temperature reduction process. The molecular structure, morphology and specific surface area of graphene nanosheets are characterized systematically. The phase composition, surface morphology and hydrogen storage properties of dual active metals Ni and Al doped graphene composites are further investigated by X-ray diffraction, scanning electron microscopy and gas reaction controller. Results show that the graphene nanosheets have typical graphene feature, whose transparent graphene edges can be observed clearly, and the specific surface area is as high as 604.2 m2 g−1. The Ni and Al doped graphene composites are composed with Ni, Al and C phases, which have high hydrogen storage capacity and excellent hydriding/dehydriding stabilities. The maximum hydrogen storage uptake of such composites is up to 5.7 wt% at 473 K, and the dehydriding efficiency is high as 96%∼97% at the dehydriding temperature of 380 K. The hydrogen adsorption and desorption rate control step of the Ni and Al doped graphene composites is complied to the nucleation and two-dimensional growth mechanism.  相似文献   

10.
Lithium decoration is an effective strategy for improving the hydrogen adsorption binding energy and the storage capacity in carbon nanostructures. Here, it is shown that Li-decorated double carbon vacancy graphene (DVG) can be used as an efficient hydrogen storage medium by means of Density Functional Theory (DFT) based calculations. The Li binding energy in DVG is 4.04 eV, which is much higher than that of pristine graphene. A maximum of four hydrogen molecules adsorb on Li decorated on one side of DVG and this leads to a gravimetric storage capacity of 3.89 wt% with an average adsorption binding energy of 0.23 eV/H2. When Li is decorated on both sides of DVG, the gravimetric storage capacity reaches 7.26 wt% with a binding energy of 0.26 eV/H2 which shows that desorption would take place at ambient conditions.  相似文献   

11.
The adsorption of hydrogen molecules on monolayer graphene is investigated using molecular dynamics simulations (MDS). Interatomic interactions of the graphene layer are described using the well-known AIREBO potential, while the interactions between graphene and hydrogen molecule are described using Lennard-Jones potential. In particular, the effect of strain and different point defects on the hydrogen storage capability of graphene is studied. The strained graphene layer is found to be more active for hydrogen and show 6.28 wt% of H2 storage at 0.1 strain at 77 K temperature and 10 bar pressure. We also studied the effect of temperature and pressure on the adsorption energy and gravimetric density of H2 on graphene. We considered different point defects in the graphene layer like monovacancy (MV), Stone Wales (SW), 5-8-5 double vacancy (DV), 555–777 DV, and 5555-6-7777 DV which usually occur during the synthesis of graphene. At 100 bar pressure, graphene with 1% concentration of MV defects leads to 9.3 wt% and 2.208 wt% of H2 storage at 77 K and 300 K, respectively, which is about 42% higher than the adsorption capacity of pristine graphene. Impact of defects on the critical stress and strain of defected graphene layers is also studied.  相似文献   

12.
Reduced graphene-oxide-supported nickel (Ni@rGO) nanocomposite catalysts were synthesized, and incorporated into magnesium (Mg) hydrogen storage materials with the aim of improving the hydrogen storage properties of these materials. The experimental results revealed that the catalytic effect of the Ni@rGO nanocomposite on Mg was more effective than that of single nickel (Ni) nanoparticles or graphene. When heated at 100 °C, the Mg–Ni and Mg–Ni@rGO composites absorbed 4.70 wt% and 5.48 wt% of H2, respectively, whereas the pure Mg and Mg@rGO composite absorbed almost no hydrogen. The addition of the Ni@rGO composite as a catalyst yielded significant improvement in the hydrogen storage property of the Mg hydrogen storage materials. The apparent activation energy of the pure Mg sample (i.e., 163.9 kJ mol−1) decreased to 139.7 kJ mol−1 and 123.4 kJ mol−1, respectively, when the sample was modified with single rGO or Ni nanoparticles. Under the catalytic action of the Ni@rGO nanocomposites, the value decreased further to 103.5 kJ mol−1. The excellent hydrogen storage properties of the Mg–Ni@rGO composite were attributed to the catalytic effects of the highly surface-active Ni nanoparticles and the unique structure of the composite nanosheets.  相似文献   

13.
We identified several parameters that correlate with the hydrogen physisorption energy and physicochemical properties of heteronuclear bonding in single-walled carbon nanotubes (SWCNT) and graphene. These parameters were used to find the most promising heteronuclear doping agents for SWCNTs and graphene for enhanced hydrogen storage capacity. Si-doping was showed to increase the amount of physisorbed hydrogen on such surfaces. Grand Canonical Ensemble Monte Carlo (GCMC) simulations showed that the hydrogen storage capacity of 10 at% Si-doped SWCNT (Si-CNT10) could reach a maximum of 2.5 wt%, almost twice the storage capacity of undoped SWCNTs, which were showed to reach a maximum capacity of 1.4 wt% at room temperature. To achieve this capacity, debundling effects of the uneven surfaces of Si-doped SWCNTs were found to be necessary. Similarly, 10 at% Si-doping on graphene (Si-GR10) was showed to increase the hydrogen storage capacity from 0.8 to 2.4 wt%.  相似文献   

14.
Two-dimensional graphene material is doped with Ni-B nanoalloys via a chemical reduction method, and shows that the optimal graphene doped with Ni (0.14 wt.%) and B (0.63 wt.%) has a hydrogen capacity of 2.81 wt.% at 77 K and 106 kPa, which is more than twice of that of the pristine graphene. The measured adsorption isotherms of hydrogen and nitrogen suggest that the Ni-B nanoalloys function as catalytic centers to induce the dissociative adsorption of hydrogen (spillover) on the graphene. The Ni-B nanoalloys without using any noble metal may be a promising catalyst for hydrogen storage application.  相似文献   

15.
As a candidate for hydrogen storage medium, Li decorated graphene with experimentally realizable nitrogen defects was investigated for geometric stability and hydrogen capacity using density functional theory (DFT) calculations. Among the three types of defective structures, it is expected that Li metal atoms are well dispersed on the graphene sheets with pyridinic and pyrrolic defects without clustering as the bond strength of Li on pyridinic and pyrrolic N-doped graphene layers is higher than the cohesive energy of the Li metal bulk. The two stable structures were found to exhibit hydrogen uptake ability up to three H2 per Li atom. The binding energies of the hydrogen molecules for these structures were in the range of 0.12–0.20 eV/H2. These results demonstrate that a Li/N-doped graphene system could be used as a hydrogen storage material.  相似文献   

16.
Mg hydride is a competitive candidates for hydrogen storage based on its high gravimetric hydrogen capacity and accessibility. In this study, a small amount of KOH and graphene were added into MgH2 by high energy ball milling. MgH2 doped with both KOH and graphene has a greatly improved hydrogen storage performance. The existence of graphene and the in-situ formed KMgH3 and MgO decreased activation energy of MgH2 to 109.89 ± 6.03 kJ/mol. The both KOH and graphene doped sample has a reversibly capacity of 5.43 wt % H2 and can released H2 as much as 6.36 times and 1.84 times faster than those of undoped sample and only KOH doped sample at 300 °C, respectively. The addition of graphene not only can provide more “H diffusion channels”, but also can disperse the catalyst.  相似文献   

17.
This study explored the hydrogen adsorption capacity of self-assembled aligned graphene oxide at room temperature. The characteristics of as-prepared graphene oxide were determined by scanning electron microscopy, Raman spectroscopy, and X-ray diffractometry techniques. Three different temperatures were taken for preheating, i.e., 25, 250, and 400 °C. The maximum adsorption pressure was given to 20 bar, and we evaluated the hydrogen adsorption competency at room temperature (25 ± 2 °C). The maximum hydrogen storage capacity was achieved ~2.5 wt%, which was found for the graphene oxide sample preheated at 400 °C. This hydrogen storage capacity was 67% and 40% more than the graphene oxide samples preheated at 25 and 250 °C, respectively. Such an enhancement of hydrogen storage capacity in the self-aligned graphene oxide samples at room temperature is attributed to reduced interlayer spacing and increased topological defects in preheated graphene oxide samples at 400 °C.  相似文献   

18.
The effect of different doped atoms on the interactions between graphene sheets and hydrogen molecules were investigated by density functional theory calculations. The interactions between graphene sheets and hydrogen molecules can be adjusted by doped atoms. The Ti-doped graphene sheet had the largest interaction energy with the hydrogen molecule (approximately −0.299 eV), followed by the Zn-doped graphene sheet (about −0.294 eV) and then the Al-doped graphene sheet (approximately −0.13 eV). The doped N atom did not improve the interactions between the N-doped graphene sheet and the hydrogen molecule. Our results may serve as a basis for the development of hydrogen storage materials.  相似文献   

19.
In this study, the hydrogen storage capacity of the graphene oxide layer was studied electrochemically. The graphene oxide was synthesized by modified Hummers' method and applied on the nickel foam by electrophoretic deposition (EPD) method at different potentials (20 and 60 V) and times (20 and 60 min) to determine the effect of applied potential and time of deposition on the hydrogen adsorption performance. The hydrogen adsorption tests including charge-discharge test, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were conducted in 6 M KOH solution and at room temperature. Based on the achieved CV curves, the graphene oxide (GO) layer achieved at 60 V within 20 min has a higher electrochemical hydrogen adsorption capability compared to other obtained samples. The calculated hydrogen storage capacity is obtained 50.9 mA. h. g?1. The rosette flower like morphology of the obtained GO layers at optimum condition, has an impressive effect on the improving electrochemical hydrogen adsorption based on morphology study by field emission scanning electron microscopy.  相似文献   

20.
The effective storage of H2 gas represents one of the major challenges in the wide spread adoption of hydrogen powered fuel cells for light vehicle transportation. Here, we investigate the merits of chemically hydrogenated graphene (graphane) as a means to store high-density hydrogen fuel for on demand delivery. In order to evaluate hydrogen storage at the macroscale, 75 g of hydrogenated graphene was synthesized using a scaled up Birch reduction, representing the largest reported synthesis of this material to date. Covalent hydrogenation of the material was characterized via Raman spectroscopy, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). We go on to demonstrate the controlled release of H2 gas from the bulk material using a sealed pressure reactor heated to 600 °C, identifying a bulk hydrogen storage capacity of 3.2 wt%. Additionally, we demonstrate for the first time, the successful operation of a hydrogen fuel cell using chemically hydrogenated graphene as a power source. This work demonstrates the utility of chemically hydrogenated graphene as a high-density hydrogen storage medium, and will be useful in the design of prototype hydrogen storage systems moving forward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号