首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This contribution investigate the effect of parameters for production of hydrogen by catalytic dehydrogenation of perhydrodibenzyltoluene (H18-DBT). The sensitivity of the dehydrogenation reaction to temperature (290–320 °C) is justified by an increase in degree of dehydrogenation (DoD) from 40 to 90% when using 1 wt % Pt/Al2O3 catalyst. However, the increase in temperature increases the hydrogen production rate and decreases the hydrogen purity by increasing the formation of by-products. In addition, the DoD of 96% is obtained when 2 wt % Pt/Al2O3 is used at 320 °C. The DoD obtained for Pd, Pt, and Pt–Pd catalysts is 11, 82 and 6%, respectively. Therefore, Pd is not a metal of choice for dehydrogenation of H18-DBT, in both monometallic and bimetallic system. The ab-initio density functional theory (DFT) calculations are consistent with this observation. Furthermore, dehydrogenation of H18-DBT followed 1st order reaction kinetics and the activation energies for 1 wt % Pt/Al2O3, 1 wt % Pd/Al2O3 and 1:1 wt % Pt–Pd/Al2O3 catalysts are: 205, 84 and 66 kJ/mol, respectively.  相似文献   

2.
The morphologies and the electron property of catalysts play the very important roles in the hydrogenation and dehydrogenation of liquid organic hydrogen carriers (LOHCs) such as dibenzyltoluene (DBT). The different morphologies and pore structures of γ-Al2O3 and MoxC doped γ-Al2O3 were synthesized as the supports for Pt catalysts. After analyzing of various characterizations and catalytic testing, it was found that the large surface area and the mesoporous structure of catalysts are beneficial to both DBT hydrogenation and perhydro-dibenzyltoluene (H18-DBT) dehydrogenation. The doping of MoxC promoted the formation of the smaller Pt nanoparticles and increased Pt dispersion. The forming Pt–Mo structure is beneficial to hydrogen spillover which suppress the formation of by-product. The high Pt dispersion of 0.1 wt% MoxC doped Pt/Al2O3 catalyst plays the positive roles in increasing H18-DBT dehydrogenation activity.  相似文献   

3.
Indole derivatives have been considered as promising liquid organic hydrogen carriers (LOHCs) for onboard hydrogen storage applications. Here a new member of indole family, 1,2-dimethylindole (1,2-DMID), was reported as a potential liquid organic hydrogen carrier with a hydrogen storage content of 5.23 wt%, a meting point of 55 °C and a boiling point of 260 °C. Full hydrogenation and dehydrogenation of 1,2-DMID can be achieved with fast kinetics under mild conditions. The hydrogenation of 1,2-DMID followed the first order kinetics with an apparent activation energy of 85.1 kJ/mol. Dehydrogenation of fully hydrogenated product, octahydro-1,2-DMID was conducted over 5 wt% Pd/Al2O3 at 170–200 °C. The stored hydrogen can be completely released at 180 °C in 3 h and at 200 °C in 1 h. The energy barrier of dehydrogenation of octahydro-1,2-DMID was calculated to be 111.9 kJ/mol 3 times cycles of hydrogenation and dehydrogenation were employed to test the recycle ability of 1,2-DMID. The structures of intermediates were also discussed by means of Material Studio calculations.  相似文献   

4.
The heat transfer oil dibenzyltoluene (DBT) offered an intriguing approach for the scattered storage of renewable excess energy as a novel Liquid Organic Hydrogen Carrier (LOHC). The integration of hydrogenation and dehydrogenation in H0-DBT/H18-DBT pairs demonstrated that the feasibility of hydrogenation and dehydrogenation reaction conducted in one reactor with the same catalyst, which would be proposed to simplify the hydrogen storage process. The optimal reaction temperature based on the inhibition of ring opening and cracking was investigated combined with the 1H NMR analysis. Meanwhile, the ideal catalyst 3 wt% Pt/Al2O3 for high hydrogen storage efficiency was screened out. Cycle tests of hydrogenation and dehydrogenation integration reaction had shown that the hydrogen storage efficiency was 84.6% after five cycle tests. The integration of hydrogenation and dehydrogenation reaction based on DBT exhibited the ideal thermal stability, which demonstrated its potential as a reversible H2 carrier.  相似文献   

5.
In this study, the hydrogenation performance of NaBH4 was modified by the addition of 10 wt% MgFe2O4 as the catalyst. The NaBH4 + 10 wt% of MgFe2O4 sample was prepared by a ball milling technique. The onset decomposition temperature of MgFe2O4-doped NaBH4 was decreased to 323 °C and 483 °C for the first and second stage of dehydrogenation as compared to the milled NaBH4 (497 °C). The desorption kinetics study showed that the addition of MgFe2O4 caused the sample to had faster hydrogen desorption with a capacity of 6.2 wt% within 60 min while the milled NaBH4 had only released 5.3 wt% of hydrogen in the same period of time. For the isothermal absorption kinetics, the total amount of hydrogen absorbed by the milled NaBH4 was 3.7 wt% while the NaBH4 + 10 wt% MgFe2O4 sample showed better absorption characteristic with a total amount of 4.5 wt% of hydrogen within 60 min. The calculated desorption activation energy from the Kissinger plot of NaBH4 + 10 wt% MgFe2O4 sample was 187 kJ/mol which reduced by 28 kJ/mol than the milled NaBH4 (215 kJ/mol). The in-situ formation of MgB6 and Fe3O4 after the dehydrogenation process indicates that these new species were responsible for the improved hydrogenation performances of NaBH4.  相似文献   

6.
We report a discovery of a new member of the liquid organic hydrogen carrier (LOHC) family, 7-ethylindole (7-EID), with a low melting point of ?14 °C and a decent hydrogen content of 5.23 wt%. Hydrogenation of the compound was carried out over a commercial 5 wt% Ru/Al2O3 catalyst in the H2 pressure range of 5–8 MPa and a temperature range of 120–160 °C, respectively. It was found that the hydrogenation rate positively correlates with the reaction temperature. However, the rate was barely effected by the H2 pressure if the pressure exceeds 6 MPa. The estimated apparent activation energy of 7-EID hydrogenation is 51.5 kJ/mol. The fully hydrogenated product, octahydro-7-ethylindole (8H-7-EID), was used as the reactant for the dehydrogenation reaction at 170–200 °C over a 5 wt% Pd/Al2O3 catalyst. Full dehydrogenation of 8H-7-EID to 7-EID can be achieved within 270 min at 190 °C. The apparent activation energy of 8H-7-EID dehydrogenation was calculated to be 101.9 kJ/mol at 170–200 °C. The liberated H2 was found to be of high purity, which meets the requirement of proton exchange membrane fuel cells.  相似文献   

7.
Organic liquid heteroaromatic compounds, e.g. 9-ethylcarbazole, are potentially promising hydrogen storage materials because they can be catalytically hydrogenated and dehydrogenated at relatively moderate temperatures. In the present work, the cyclic hydrogenation of 9-ethylcarbazole and the temperature controlled stage-wise dehydrogenation of perhydro-9-ethylcarbazole were investigated. Full hydrogenation of 9-ethylcarbazole was realized over a 5 wt% Ru/Al2O3 catalyst at 180 °C and 80 bar, yielding a gravimetric density of 5.79 wt%. The catalytic dehydrogenation of perhydro-9-ethylcarbazole over a 5 wt% Pd/Al2O3 catalyst was found to undergo a three-stage process, i.e. perhydro-9-ethylcarbazole → octahydro-9-ethylcarbazole, octahydro-9-ethylcarbazole → tetrahydro-9-ethylcarbazole, and tetrahydro-9-ethylcarbazole → 9-ethylcarbazole with the initial reaction temperatures of 128 °C, 145 °C and 178 °C, respectively. Our results indicate that 9-ethylcarbazole displays an excellent cycle performance with very little capacity degradation after 10 cycles of catalytic hydrogenation and dehydrogenation. The hydrogen gas produced from the dehydrogenation possesses a high purity of over 99.99% with no carbon monoxide or other poisonous gases for fuel cells.  相似文献   

8.
The effect of the Pt loadings and particles sizes on the stability of Pt(x wt%)/Al2O3 catalysts were investigated in the partial oxidation of methane (POM) reaction. The Al2O3 support was prepared by sol-gel method and different Pt loadings, varying from 0.5 to 2.0 wt% were incorporated to alumina through the incipient wetness impregnation method. The physicochemical features of the catalysts were determined by XRD, ICP-OES, Nitrogen-sorption, UV–Visible, H2-TPR, CO-DRIFTS, SEM-EDS, XPS and HRTEM techniques. The metal dispersion was evaluated in the cyclohexane dehydrogenation reaction. Lower Pt loadings resulted in well dispersed Pto nanoparticles with an enhanced activity in cyclohexane dehydrogenation and POM reactions. With increasing Pt loading to 2.0 wt%, the Pt nanoparticles of the Pt(2.0 wt%)/Al2O3 showed a methane conversion of 63% in 24 h of time on stream, and the catalyst was very selective to H2 and CO. Based on the HRTEM, XPS and Raman spectroscopy techniques, an increment in the Pt loadings evidenced an enrichment of Pto clusters on the surface, however, no heavy carbon deposits formation was observed.  相似文献   

9.
Liquid organic hydrogen carrier (LOHC) is a chemical hydrogen storage method that stores hydrogen in the form of liquid organics. Dibenzyltoluene (DBT) is a promising LOHC material due to its high storage density, low ignitability, and low cost. In this study, Pt/Al2O3 and Pt/CeO2 catalysts are synthesized using a combustion nanocatalyst synthesis method called the glycine nitrate process (GNP) to obtain high catalytic activity for the dehydrogenation of perhydro-dibenzyltoluene (H18-DBT). Pt/CeO2 exhibits much faster dehydrogenation than Pt/Al2O3, 80.5%/2.5 h versus 3.5%/2.5 h. To investigate the causes of the difference in the dehydrogenation rates, microstructural characterization by N2 physisorption, CO chemisorption and transmission electron microscopy analysis are conducted, and the catalytic activities are evaluated at various liquid hourly space velocities (LHSVs). The differences in dehydrogenation can be attributed to the mass transport of liquid H18-DBT into the catalyst pores being slow due to the small pores in Pt/Al2O3, which is a rarely addressed issue for other LOHC materials. This is because many LOHC materials are dehydrogenated at the gas phase, which has higher diffusivity than that of the liquid phase. Pt/CeO2 synthesized by the GNP is also compared with a commercial Pt/Al2O3 catalyst. The commercial Pt/Al2O3 catalyst shows a dehydrogenation of 17.8%/2.5 h, which is much slower than that of Pt/CeO2 synthesized by the GNP, at 80.5%/2.5 h.  相似文献   

10.
Hydrogen being a dynamically impending energy transporter is widely used in hydrogenation reactions for the synthesis of various value added chemicals. It can be obtained from dehydrogenation reactions and the acquired hydrogen molecule can directly be utilized in hydrogenation reactions. This correspondingly avoids external pumping of hydrogen making it an economical process. We have for the first time tried to carryout 1,4-butanediol dehydrogenation and benzaldehyde hydrogenation simultaneously over ceria-alumina supported copper (Cu/CeO2–Al2O3) catalyst. In this concern, 10 wt% of Cu supported on CeO2–Al2O3 (3:1 ratio) was synthesized using wet impregnation method. The synthesized catalyst was then characterized by various analytical methods such as BET, powder XRD, FE-SEM, H2-TPR, NH3 and CO2-TPD, FT-IR and TGA. The catalytic activity towards simultaneous 1,4-butanediol dehydrogenation and benzaldehyde hydrogenation along with their individual reactions was tested for temperature range of 240 °C–300 °C. The physicochemical properties enhanced the catalytic activity as clearly interpreted from the results obtained from the respective characterization data. The best results were obtained with 10 wt% of Cu supported on CeO2–Al2O3 (3:1 ratio) catalyst with benzaldehyde conversion of 34% and 84% selectivity of benzyl alcohol. The conversion of 1,4-butanediol was seen to be 90% with around 95% selectivity of γ-butyrolactone. The catalyst also featured physicochemical properties namely increased surface area, higher dispersion and its highly basic nature, for the simultaneous reaction towards a positive direction. In terms of permanence, the Cu/CeO2–Al2O3 (10CCA) catalyst was quite steady and showed stable activity up to 24 h in time on stream profile.  相似文献   

11.
N-ethylcarbazole (NEC) is a promising liquid organic hydrogen carrier, while sluggish kinetics of hydrogen absorption and desorption restrict its application. To overcome that, a YH3 promoted palladium catalyst Pd/Al2O3-YH3 is developed in this work by taking advantage of the fast reversible hydrogenation and dehydrogenation kinetics of YH3. With the Pd/Al2O3-YH3, NEC can reversibly store 5.5 wt% hydrogen in 4 h below 473 K. The performance is the best compared to that of all the reported catalysts for both hydrogen absorption and desorption. Moreover, there are no gaseous impurities produced and no performance decay during three hydrogen storage cycles. The excellent performance derives from the intrinsic high catalytic activity of Pd/Al2O3 and the promoting effect of YH3 by providing a new hydrogen transfer path, making NEC more attractive for practical application.  相似文献   

12.
Highly dispersed Pd nanoparticles immobilized in MIL-101 (Pd@MIL-101) were prepared and used for the catalytic dehydrogenation of Liquid organic hydrogen carriers (LOHC). The as-synthesized catalysts were characterized and it was found that 3 wt% of Pd@MIL-101 embodied smaller and highly dispersed Pd NPs. The catalytic activities of as-synthesized catalysts were investigated by the dehydrogenation of a representative LOHC compound, perhydro-N-propylcarbazole (12H-NPCZ). The results indicated that 3 wt% Pd@MIL-101 catalyst exhibited good catalytic activity and good reusability for the dehydrogenation of 12H-NPCZ, which is superior to that of commercial 5 wt% Pd/Al2O3 catalyst. This study demonstrates that Pd@MIL-101 is a promising dehydrogenation catalyst for the application of LOHC technology.  相似文献   

13.
The investigation of dehydrogenation catalysts to achieve rapidly hydrogen release of Liquid Organic Hydrogen Carriers (LOHCs) are of crucial importance for large-scale applications. The catalyst supports with bulk surface area and decent acid-base nature is a key parameter for catalyst to improve its catalytic performance as well as reduce precious metal dosage. Herein, alumina was chosen as a support for Pd loading and prepared through hydrothermal route at different temperatures. The morphology and surface acid property of the alumina supports were investigated in detail. The results revealed that the hydrothermal temperature had a closely effect on the morphology, surface acidity and specific surface area of alumina, resulting in a further impact on Pd dispersion and particle size associated tightly with catalytic activity of Pd/Al2O3. The catalyst with 1 wt% Pd loaded on alumina carrier prepared via hydrothermal treatment at 120 °C showed the best catalytic performance for dehydrogenation of perhydro-N-propylcarbazole (12H-NPCZ). Full dehydrogenation with 100% conversion to N-propylcarbazole (NPCZ) could be achieved after 360 min at 180 °C and 101 kPa, which is higher than that of commercial 5 wt% Pd/Al2O3 catalyst. The catalyst has potential commercial application value in large-scale application of LOHC technology.  相似文献   

14.
A series of catalysts with different acid strengths were obtained by constructing unsaturated pentacoordinate (Al3+penta) sites in Al2O3 and loading with boron. The effects of support properties and the addition of boron on the strength and type of catalyst acid were investigated, and their influence on the dehydrogenation performance of methylcyclohexane (MCH) was discussed. In Pt-B/Al2O3-600 catalysts containing Al3+penta sites, the strongly acidic L acid sites gradually decreased and the weakly acidic [L + B] acid sites gradually increased with increasing boron loading, indicating coverage of the Al3+penta site by boron. In Pt-B/Al2O3-750 catalysts without Al3+penta sites, strongly acidic L acid sites gradually decrease with increasing boron loading and weakly acidic [L + B] acid sites remains essentially unchanged. For Pt-B/Al2O3-600 catalysts, the effect of boron on the interaction of Pt with Al2O3 is minimized when the loading of boron is between 0 and 1 wt% and the MCH dehydrogenation performance increases with the number of weak acid sites. At a boron loading of 1 wt%, the abundance of weak acid sites maintains the dispersion of Pt and allows a suitable interaction between Pt and Al2O3, thus enhancing the dehydrogenation performance of MCH.  相似文献   

15.
Palladium/platinum-based catalysts are widely used in the dehydrogenation process of Liquid Organic Hydrogen Carriers (LOHCs). The cost of noble metal has become a main drawback for LOHCs large-scale application. Partial replacement of Pd/Pt by other transition metals can be an effective solution. In this paper, we synthesize the bimetallic Pd–Ni catalyst by incipient wet impregnation and the catalytic dehydrogenation performance of perhydro-N-propylcarbazole (12H-NPCZ) as a LOHC candidate. Ni and Pd were impregnated on mesoporous alumina to obtain both monometallic and bimetallic catalysts, i.e. Pd/Al2O3, Ni/Al2O3 and Pd–Ni/Al2O3 (Pd:Ni = 1:1) with total metal loading of 5 wt%, respectively. The above catalysts were characterized by N2-adsorption/desorption, H2-temperature programmed reduction, X-Ray diffraction, X-Ray photoelectron spectroscopy, Inductively coupled plasma - optical emission spectrometer, CO pulse adsorption and Transmission electron microscopy. The catalytic dehydrogenation results indicated that the bimetallic Pd–Ni/Al2O3 showed best catalytic activity, followed by Pd/Al2O3, commercial Pd/Al2O3 and Ni/Al2O3. Notably, the catalytic activity of bimetallic was well maintained after 5 cycles at 200 °C with no degradation, indicating this bimetallic catalyst has potential prospect for large-scale application.  相似文献   

16.
Dehydrogenation of methylcyclohexane (MCH) for hydrogen transportation and delivery application was carried out over 3 wt% Pt/V2O5 and 3 wt% Pt/Y2O3 catalyst. The catalytic activity was tested using a spray-pulse mode of reactor. Effective dehydrogenation of MCH under spray-pulse mode of reactant injection was observed. In terms of hydrogen evolution rate at 60 min from start of reaction the activity of 958 mmol/g/min was obtained at temperature of 350 °C. Nearly 100% selectivity toward hydrogen was obtained. A relatively high conversion of 98% was observed with 3 wt% Pt/Y2O3 at 60 min using an advanced spray-pulse reactor system. The catalysts were characterized using x-ray diffraction pattern (XRD), CO-chemisorption metal analysis, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis.  相似文献   

17.
The behavior of selective hydrogen combustion (SHC) in the presence of propylene and propane changing with reaction temperature in a range of 100–600 °C has been investigated over the Pt catalysts supported on A-zeolites. The effect of Pt loading varying from 0.01 to 2 wt% on the catalytic SHC performance has been studied in the conditions with a feed gas molar composition of C3H8/C3H6/H2/O2 = 4/4/4/2 balanced with N2 and gas hourly space velocity of 15,000 h−1. The results show that for each Pt/3A catalyst having a different Pt loading there is a maximum of H2 conversion by combustion appearing between 300 and 400 °C, while the selectivity to comprehensive H2 conversion can maintain 100% when the temperature lower than 300 °C. Moreover, the Pt/3A catalyst with a Pt loading of 0.5 wt % performs better than the others at the temperatures higher than 300 °C. The maximal H2 combustion achieved over the 0.5 wt% Pt/3A catalyst is as high as 96.6% along with a selectivity of 100% at 300 °C, and a 92.4% H2 combustion with 98.5% selectivity can be obtained even if at 500 °C. The characterization of the catalysts reveals that the distribution of Pt atoms and the number of atoms in Pt clusters may be the key factors for giving rise to the good SHC performance. The influence of three types of A-zeolite supports on the Pt catalyzed SHC process has also been investigated. 3A zeolite is superior to 4A and 5A for supporting 0.5 wt% Pt catalyst in terms of both activity and selectivity. The lower C3H6 conversion on the 0.5 wt% Pt/3A catalyst compared to the 0.5 wt% Pt/5A may be ascribed to the insufficient sites for the C3H6 activation on the surface of Pt/3A due to the limitation of 3A channels inaccessible to C3H6. This contrarily brings about the better SHC performance on the 0.5 wt% Pt/3A catalyst.  相似文献   

18.
Dry reforming of glycerol has been carried out over alumina-supported Ni catalyst promoted with lanthanum. The catalysts were characterized using EDX, liquid N2 adsorption, XRD technique as well as temperature-programmed reduction. Significantly, catalytic glycerol dry reforming under atmospheric pressure and at reaction temperature of 1023 K employing 3 wt%La–Ni/Al2O3 catalyst yielded H2, CO and CH4 as main gaseous products with H2:CO < 2.0. Post-reaction, XRD analysis of used catalysts showed carbon deposition during glycerol dry reforming. Consequently, BET surface area measurement for used catalysts yielded 10–21% area reduction. Temperature-programmed gasification studies with O2 as a gasification agent has revealed that La promotion managed to reduce carbon laydown (up to 20% improvement). In comparison, the unpromoted Ni/Al2O3 catalyst exhibited the highest carbon deposition (circa 33.0 wt%).  相似文献   

19.
In order to improve the hydrogenation/dehydrogenation properties of the Mg/MgH2 system, the nickel hydride complex NiHCl(P(C6H11)3)2 has been added in different amounts to MgH2 by planetary ball milling. The hydrogen storage properties of the formed composites were studied by different thermal analyses methods (temperature programmed desorption, calorimetric and pressure-composition-temperature analyses). The optimal amount of the nickel complex precursor was found to be of 20 wt%. It allows to homogeneously disperse 1.8 wt% of nickel active species at the surface of the Mg/MgH2 particles. After the decomposition of the complex during MgH2 dehydrogenation, the formed composite is stable upon cycling at low temperature. It can release hydrogen at 200 °C and absorb 6.3 wt% of H2 at 100 °C in less than 1 h. The significantly enhanced H2 storage properties are due to the impact of the highly dispersed nickel on both the kinetics and thermodynamics of the Mg/MgH2 system. The hydrogenation and dehydrogenation enthalpies were found to be of −65 and 63 kJ/mol H2 respectively (±75 kJ/mol H2 for pure Mg/MgH2) and the calculated apparent activation energies of the hydrogen uptake and release processes are of 22 and 127 kJ/mol H2 respectively (88 and 176 kJ/mol H2 for pure Mg/MgH2). The change in the thermodynamics observed in the formed composite is likely to be due to the formation of a Mg0.992Ni0.008 phase during dehydrogenation/hydrogenation cycling. The impact of another hydride nickel precursor in which chloride has been replaced by a borohydride ligand, namely NiH(BH4)(P(C6H11)3)2, is also reported.  相似文献   

20.
A 3NaBH4/YF3 hydrogen storage composite was prepared through ball milling and its hydrogen sorption properties were investigated. It is shown that NaBH4 does not react with YF3 during ball milling. The dehydrogenation of the composite starts at 423 °C, which is about 100 °C lower than the dehydrogenation temperature of pure NaBH4, with a mass loss of 4.12 wt%. Pressure–Composition–Temperature tests reveal that the composite has reversible hydrogen sorption performance in the temperature range from 350 °C to 413 °C and under quite low hydrogenation plateau pressures (<1 MPa). Its maximum hydrogen storage capacity can reach up to 3.52 wt%. The dehydrogenated composite can absorb 3.2 wt% of hydrogen within 5 min at 400 °C. Based on the Pressure–Composition–Temperature analyses, the hydrogenation enthalpy of the composite is determined to be −46.05 kJ/mol H2, while the dehydrogenation enthalpy is 176.76 kJ/mol H2. The mechanism of reversible hydrogen sorption in the composite involves the decomposition and regeneration of NaBH4 through the reaction with YF3. Therefore, the addition of the YF3 to NaBH4 as a reagent forms a reversible hydrogen storage composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号