首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the years, there has been a substantial increase in the demands of a portable, green source of energy for powering microelectronics to be used as sensors, medical implants and other lab-on-chip devices. Microfluidic microbial fuel cells have been identified as a genuine option to address these requirements. These cells operating at microscale level are characterised by laminar flow of fuel and oxidant which eradicates the requirement of a membrane ensuring higher performance and improved reaction rates than conventional fuel cells. Owing to these advantages, microsized microbial fuel cells have been extensively used to design micro power sources for environmental biosensors, point-of-care diagnostics, medical implants. However, the microfluidic microbial fuel cell technology suffers from some noteworthy disadvantages which need to be addressed before the commercialization of technology. The review comprehensively discusses the development, and advancements in microfluidic microbial fuel cell technology followed by their current applications, challenges, the possible solutions and future prospects.  相似文献   

2.
Iron-chelated electrocatalysts for the oxygen reduction reaction (ORR) in a microbial fuel cell (MFC) were prepared from sodium ferric ethylenediamine-N,N′-bis(2-hydroxyphenylacetic acid) (FeE), sodium ferric diethylene triamine pentaacetic acid (FeD) supported on carbon Vulcan XC-72R carbon black and multi-walled carbon nanotubes (CNTs). Catalyst morphology was investigated by TEM; and the total surfaces areas as well as the pore volumes of catalysts were examined by nitrogen physisorption characterization. The catalytic activity of the iron based catalysts towards ORR was studied by cyclic voltammetry, showing the higher electrochemical activity of FeE in comparison with FeD and the superior performance of catalysts supported on CNT rather than on Vulcan XC-72R carbon black. FeE/CNT was used as cathodic catalyst in a microbial fuel cell (MFC) using domestic wastewater as fuel. The maximum current density and power density recorded are 110 (mA m−2) and 127 ± 0.9 (mW m−2), respectively. These values are comparable with those obtained using platinum on carbon Vulcan (0.13 mA m−2 and 226 ± 0.2 mW m−2), demonstrating that these catalysts can be used as substitutes for commercial Pt/C.  相似文献   

3.
Microbial fuel (MFCs) and electrolysis cells (MECs) can be used to recover energy directly as electricity or hydrogen from organic matter. Organic removal efficiencies and values of the different energy products were compared for MFCs and MECs fed winery or domestic wastewater. TCOD removal (%) and energy recoveries (kWh/kg-COD) were higher for MFCs than MECs with both wastewaters. At a cost of $4.51/kg-H2 for winery wastewater and $3.01/kg-H2 for domestic wastewater, the hydrogen produced using MECs cost less than the estimated merchant value of hydrogen ($6/kg-H2). 16S rRNA clone libraries indicated the predominance of Geobacter species in anodic microbial communities in MECs for both wastewaters, suggesting low current densities were the result of substrate limitations. The results of this study show that energy recovery and organic removal from wastewater are more effective with MFCs than MECs, but that hydrogen production from wastewater fed MECs can be cost effective.  相似文献   

4.
With the advantages of clean, efficient and energy-saving, microbial fuel cells (MFCs) were characterized with perfect significance in the field of degrading environmental pollutants and generating electricity meanwhile. The cathode materials affected the activity of oxygen reduction reaction (ORR), and affected the power generation performance for MFCs. There were many kinds of nano materials played an important role in the field of cathode catalysis. The advantages of metal and non-metal composites were easy to obtain and low cost; layered double hydroxide (LDH) was easy to control and compound, and could be fully realized functionalization; metal organic frameworks (MOFs) were widely used since their porosity, high specific surface area and high activity; covalent organic frameworks (COFs) were low density and easy to be modified, so as to modify and realize functionalization; MXene was an excellent two-dimensional material, which could provide more channels for the movement of ions. The nano materials formed by the composite of various materials combined the advantages of various materials and played key role in improving ORR performance of MFCs.  相似文献   

5.
In this study, four different catalysts (i.e., carbon black, nickel nanoparticle (Ni)/C, Phthalocyanine/C and copper-phthalocyanine/C), were tested in a two-chamber Microbial Fuel Cell (MFC) and their performances were compared with Pt as the common cathode catalyst in MFC. The characterization of catalysts was done by TEM, XPS and EDX and their electrochemical characteristics were compared by cyclic voltammetry (CV) and Linear Sweep Voltammetry (LSV). The results proved that copper phthalocyanine and nickel nanoparticles are potential alternatives catalyst for Pt. Even copper-phthalocyanine generated power is almost the same as Pt. The CV and LSV results reported high electrochemical activity of these catalysts. The maximum power density and coulombic efficiency was achieved by copper-phthalocyanine/C as 118.2 mW/m2 and 29.3%.  相似文献   

6.
In this study, a cathode catalyst for microbial fuel cells (MFCs) was successfully prepared by a simple step-by-step hydrothermal method. Graphene oxide (GO) and layered double hydroxide (LDH) composite substrate and three-dimensional covalent organic framework materials (COF-300) grown vertically on the surface were observed. (003), (006), (012), (018), (110) were the obvious crystal plane of the composite COF-300@NiAl-LDH/GO. C, O, N, Ni, Na, Al and other elements existed on the surface of the composite. The maximum power density produced by COF-300@NiAl-LDH/GO-MFC was 481.69 mW/m2, which was 1.22 times of Ti3AlC2/NiCoAl-LDH-MFC (393.82 mW/m2) and 2.21 times of Ti3AlC2-MFC (217.73 mW/m2). The maximum voltage of COF-300@NiAl-LDH/GO-MFC was 518 mV and it could remain stable within 8 days. GO was used as the substrate to improve the conductivity; LDH was used to enhance the catalytic activity and electron transfer rate; The three-dimensional bulk COF-300 attached to the surface enhanced the surface area and catalytic properties; The above jointly promoted oxygen reduction reaction of cathode, so as to improve MFC performances.  相似文献   

7.
Sediment microbial fuel cells (SMFCs) provide a promising sustainable technological platform that has been proposed for multiple applications, including sediment bioremediation and power sources for environmental sensors. However, the practical applications of SMFC are restricted due to their limited output power. This review analyzes the limitations on output power and their causes. Then, a variety of strategies proposed to improve the power performance of SMFC, ranging from electrode modification to SMFC configuration optimization and energy harvesting strategies, are summarized and discussed in detail. Finally, future challenges and perspectives are analyzed, with an expectation that SMFC technology can be further advanced. This review aims to provide insights into power performance improvement and practical applications of SMFC.  相似文献   

8.
A single chamber microbial fuel cell (MFC) with an air-cathode is successfully demonstrated using glucose-ceftriaxone sodium mixtures or ceftriaxone sodium as fuel. Results show that the ceftriaxone sodium can be biodegraded and produce electricity simultaneously. Interestingly, these ceftriaxone sodium-glucose mixtures play an active role in production of electricity. The maximum power density is increased in comparison to 1000 mg L−1 glucose (19 W m−3) by 495% for 50 mg L−1 ceftriaxone sodium + 1000 mg L−1 glucose (113 W m−3), while the maximum power density is 11 W m−3 using 50 mg L−1 ceftriaxone sodium as the sole fuel. Moreover, ceftriaxone sodium biodegradation rate reaches 91% within 24 h using the MFC in comparison with 51% using the traditional anaerobic reactor. These results indicate that some toxic and bio-refractory organics such as antibiotic wastewater might be suitable resources for electricity generation using the MFC technology.  相似文献   

9.
The cost of electrode materials is one of the most important factors limiting the scale of microbial fuel cells (MFCs). In this study, a novel double-sided cloth (DC) without diffusion layer is using as air-cathode, which decreases the cost and simplifies electrode production process. Using Pt as catalyst, the maximum power density of MFC using DC cathode is 0.70 ± 0.02 W m−2, which is similar to that obtained using carbon cloth (CC) cathodes (0.66 ± 0.01 W m−2). After running in stable status, the Coulombic efficiencies (CEs) (18 ± 1%) and COD removal rates (75 ± 3%) are almost the same as those of CC cathode with diffusion layers. Using carbon powder as catalyst on the DC cathode, the maximum powder density is 0.41 ± 0.01 W m−2, with a COD removal rate of 66 ± 2% and a CE of 13.9 ± 0.5%. The total cost of cathode based on power output decreases as follows: CC with Pt (CC-Pt, 2652$ W−1), DC with Pt (DC-Pt, 1007$ W−1) and DC with carbon powder (DC-C, 22$ W−1), showing that DC is an inexpensive and promising cathode material for future applications.  相似文献   

10.
Effect on microbial fuel cells (MFCs) for decolorization of Congo red by Poly (aniline-1,8-diaminonaphthalene) (PANDAN) modification, current and electroactive biofilms (EABs) is investigated. With the synergism of the three factors: PANDAN modification, current and EABs (A2 reactor), the COD removal and decolorization rate significantly increase to 88% and 97%, as well as the Congo red is thoroughly degraded. The decolorization performance comparison and Redundancy analysis (RDA) results indicate that the EABs take more responsibility (contribute ~ 50%) for the decolorization, rather than the modification and current. Therefore, the effects and mechanism of PANDAN modification and current on EABs are further revealed by the Confocal Scanning Laser Microscopy (CSLM) and high-throughput sequencing analysis. The effects of current (anodic dynamical microenvironment), material adsorption, and electron transfer mediating act comprehensively on the thickness, viability, EPS and microbial community of the EABs, among which the relationship is discussed in depth by hierarchically comparison, with “independent and additional effects”. It is demonstrated that the modification, current and EABs present the synergistic effect and promote each other in the performance of the decolorization MFC.  相似文献   

11.
A double-chamber self pH-buffer microbial fuel cell (MFC) was used to investigate the effect of dissolved oxygen (DO) concentration on cathodic nitrification coupled with anodic denitrification MFC. It was found that nitrogen and COD removal, electricity generation were positively correlated with DO concentration in the cathode chamber. When total inorganic nitrogen of influent was 202.51 ± 7.82 mg/L at DO 6.8 mg/L, the maximum voltage output was 282 mV and the maximum power density was 149.76 mW/m2. After 82 h operation, the highest removal rate of total inorganic nitrogen was 91.71 ± 0.38%. Electrochemical impedance spectroscopy (EIS) test showed that the internal resistance of the reactor with different DO concentration was related to the diffusion internal resistance. The data of bacterial analysis in the cathode chamber revealed that there were not only ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), but also a large number of exoelectrogens. Compared with the traditional biological denitrification and related MFC denitrification research, this method does not need pH-buffer solution and external circulation device through the anion exchange membrane (AEM). It can generate electricity and remove nitrogen simultaneously, and the oxygen utilization rate in the cathode can also be enhanced.  相似文献   

12.
Microbial fuel cells (MFCs) use microorganisms to convert organic matter into electricity. In order to enhance the mass transfer of MFCs, four types of simplified flow channels, without flow obstacles (square, circular, divergent and convergent), were designed and applied to the anode/cathode channels of MFCs. The simulation analysis showed that the four types of simplified flow channels without flow obstacles obtained a better flow mixing efficiency with an Aspect Ratio (AR) of 1 at a Reynolds number (Re) of 60. A maximum power density of 617.8 mW/m2 and a COD (chemical oxygen demand) degradation ratio = 9.9% were obtained by the MFCs with the convergent types of flow channels without flow obstacles. This is because the flow mechanism (convection and vortex flow) generated by convergent types of flow channels decrease the mass transfer and ohmic losses. Therefore, this concept of the simplified flow channel without flow obstacles will be useful to the application of MFCs in the future.  相似文献   

13.
High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells (PEMFCs), in which Pt-based catalysts employed in the cathodic catalyst layer (CCL) account for the major portion of the cost. Although non-precious metal catalysts (NPMCs) show appreciable activity and stability in the oxygen reduction reaction (ORR), the performance of fuel cells based on NPMCs remains unsatisfactory compared to those using Pt-based CCL. Therefore, most studies on NPMC-based fuel cells focus on developing highly active catalysts rather than facilitating oxygen transport. In this work, the oxygen transport behavior in CCLs based on highly active Fe-N-C catalysts is comprehensively explored through the elaborate design of two types of membrane electrode structures, one containing low-Pt-based CCL and NPMC-based dummy catalyst layer (DCL) and the other containing only the NPMC-based CCL. Using Zn-N-C based DCLs of different thickness, the bulk oxygen transport resistance at the unit thickness in NPMC-based CCL was quantified via the limiting current method combined with linear fitting analysis. Then, the local and bulk resistances in NPMC-based CCLs were quantified via the limiting current method and scanning electron microscopy, respectively. Results show that the ratios of local and bulk oxygen transport resistances in NPMC-based CCL are 80% and 20%, respectively, and that an enhancement of local oxygen transport is critical to greatly improve the performance of NPMC-based PEMFCs. Furthermore, the activity of active sites per unit in NPMC-based CCLs was determined to be lower than that in the Pt-based CCL, thus explaining worse cell performance of NPMC-based membrane electrode assemblys (MEAs). It is believed that the development of NPMC-based PEMFCs should proceed not only through the design of catalysts with higher activity but also through the improvement of oxygen transport in the CCL.  相似文献   

14.
This study focused on novel cathode structures to increase power generation and organic substrate removal in microbial fuel cells (MFCs). Three types of cathode structures, including two-layer (gas diffusion layer (GDL) and catalyst layer (CL)), three-layer (GDL, micro porous layer (MPL) and CL), and multi-layer (GDL, CL, carbon based layer (CBL) and hydrophobic layers) structures were examined and compared in single-chamber MFCs (SCMFCs). The results showed that the three-layer (3L) cathode structures had lower water loss than other cathodes and had a high power density (501 mW/m2). The MPL in the 3L cathode structure prevented biofilm penetration into the cathode structure, which facilitated the oxygen reduction reaction (ORR) at the cathode. The SCMFCs with the 3L cathodes had a low ohmic resistance (Rohmic: 26-34 Ω) and a high cathode open circuit potential (OCP: 191 mV). The organic substrate removal efficiency (71-78%) in the SCMFCs with 3L cathodes was higher than the SCMFCs with two-layer and multi-layer cathodes (49-68%). This study demonstrated that inserting the MPL between CL and GDL substantially enhanced the overall electrical conduction, power generation and organic substrate removal in MFCs by reducing water loss and preventing biofilm infiltration into the cathode structure.  相似文献   

15.
Electrochemical Impedance Spectroscopy is employed to understand the role of anodic capacitance and individual component resistance in the bioelectricity generation of microbial fuel cells.The anodic capacitance during initial bacterial growth and biofilm formation (1–9 days) is 6 times higher than the literature data.The power density calculated on day 24 being 0.497 W/m2 which is approximately 3 times higher than the literature data.The maximum columbic efficiency obtained is 30.8% which is 2.8 times higher than literature. These results demonstrate that the mixed culture bacteria is more efficient in bioelectricity generation in microbial fuel cells and the anodic capacitance due to biofilm growth on anode plays an important role in the power generation of microbial fuel cells. The electrode resistance dominates over solution resistance due to Hydrogen Evolution and Oxygen Reduction Reactions.  相似文献   

16.
In this paper, a numerical model for the prediction of Microbial Fuel Cells (MFC) performance is proposed. The model is based on the Lattice Boltzmann Method, a numerical approach based on an optimized formulation of Boltzmann's kinetic equation. The model is able to account for the evolution in time of the main parameters related to MFC operation: namely, pH, bacteria activity, current density and it is able to predict the trends of polarization and power curves. The results of the model are compared to experimental data, highlighting the accuracy and flexibility of the proposed model.  相似文献   

17.
The effects of Pseudomonas aeruginosa, pyocyanin, and influent dissolved oxygen (DO) on the electricity generation in a baffled stacking microbial fuel cell (MFC) treating high strength molasses wastewater were investigated. The result shows that the influent chemical oxygen demand (COD) of 500–1000 mg l−1 had the optimal substrate-energy conversion rate. The addition of a low density of P. aeruginosa (8.2 mg l−1) or P. aeruginosa with pyocyanin improved the COD removal and power generation. This improvement could be attributed to the enhancement of electron transfer with the help of redox mediators. Influent DO at a concentration of up to 1.22 mg l−1 did not inhibit the electricity generation. Large proportions of COD, organic-N and total-N were removed by the MFC. The MFC effluent was highly biodegradable. Denaturing gradient gel electrophoresis analysis shows that the added pyocyanin resided in the MFC for up to 14 days. An analysis of anode voltage reveals that microbial proton transport to the cathode was importantly responsible for the internal resistance.  相似文献   

18.
The practical applications of sediment microbial fuel cells (SMFCs) are limited by their low power densities. In this work, a novel SMFC configuration with a cylindrical borehole embedded in the sediment layer is proposed with expectations of reducing internal resistance, enhancing mass transfer, and accordingly increasing power density. Two types of boreholes with same diameter of 10 cm, but different depths of 3 cm and 6 cm are constructed in SMFCs (SMFC-3 and SMFC-6). Results demonstrate that SMFC-3 produces the highest maximum power density (65.6 mW/m2), which is 25.5% and 65.6% higher than that in SMFC-6 (52.3 mW/m2) and the control SMFC (SMFC-C, 39.4 mW/m2), respectively. The improved power performance in SMFC-3 is mainly due to the greatly reduced internal resistance. Compared to SMFC-6, the higher power density in SMFC-3 is also due to the relatively low overlying water pH values, providing suitable pH condition for cathodic reactions. Microbial community analyses demonstrate that Alphaproteobacteria and Gammaproteobacteria are major contributors to the bioelectricity, and that electroactive species enriched on the top and bottom sides of anodes are significantly different. Generally, embedding a small borehole into the sediment layer is an easy-to-implement and cost-effective strategy for improving the power performance of SMFCs.  相似文献   

19.
The choice of the cathode material is crucial for every bio-cathode microbial fuel cell (MFC) setup. The commonly used biocathode materials, Graphite felt (GF), carbon paper (CP) and stainless steel mesh (SSM) were compared and evaluated in terms of current density, power density, and polarization. The maximum current density and power density of the MFC with GF-biocathode achieved 350 mA m−2 and 109.5 mW m−2, which were higher than that of the MFC with CP-biocathode (210 mA m−2 and 32.7 mW m−2) and the MFC with SSM-biocathode (18 mA m−2 and 3.1 mW m−2). The polarization indicated that the biocathode was the limiting factor for the three MFC reactors. Moreover, cyclic voltammetry (CV) showed that the microorganisms on the biocathode played a major role in oxygen reduction reaction (ORR) for GF- and CP-biocathode but SSM-biocathode. Electrochemical impedance spectroscopy suggested that GF biocathode performed better catalytic activity toward ORR than that of CP- and SSM-biocathode, also supported by CV test. Additionally, the MFC with GF-biocathode had the highest Coulombic Efficiency. The results of this study demonstrated GF was the most suitable biocathode for MFCs application among the three types of materials when using anaerobic sludge as inoculums.  相似文献   

20.
Current state-of-the-art proton exchange membrane (PEM) fuel cell electrodes are typically comprised of either short-side-chain (SSC) or long-side-chain (LSC) ionomers, owing to their proven success in the electrode performance and durability under regular cell operation. However, the electrodes based on these two prominent ionomers have not been sufficiently investigated under sub-freezing conditions. In this study, the impact of ionomer type on the degradations of the surface wettability and gas permeability characteristics has been investigated for PEM fuel cell electrodes under freeze-thaw (F-T) cycles between 30 °C and −40 °C. The electrodes comprised of either SSC or LSC ionomers are manufactured with different catalyst loadings. It is found that the F-T cycles induce severe degradations in the electrodes, and the resulting surface morphologies differ greatly, depending on the ionomer type and catalyst loading. For a given catalyst loading, the SSC electrodes degrade more heavily than the LSC ones. Further, independent of the ionomer type, the high catalyst loading electrodes tend to degrade slower than their low catalyst loading counterparts. The SSC catalyst layers peel off from the electrodes virtually completely with the microporous layer largely degraded, inducing a highly corroded and heterogeneous surface morphology. The LSC electrodes experience relatively less degradations, thus the resulting surface morphologies are less corroded and more homogeneous. For all the electrodes, the morphological degradations cause a substantial increase in the gas permeability coefficients, but a decrease in the static contact angles. These increments and decrements correlate well with the severity of the surface degradations, and they are rapid and more substantial for the SSC electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号