共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2021,46(67):33523-33540
The metal-supported solid oxide fuel cell (MS-SOFC) is of current research interest in the clean energy field due to its high performance, quick start-up, thermal cycle stability, and lower raw material cost compared to the conventional cermet-based SOFC. To efficiently operate a MS-SOFC using complex hydrocarbon and logistic fuels, it is required to introduce an internal reforming catalyst within the anode metal scaffold. This review article discusses some examples of the performance of MS-SOFCs under hydrocarbon and logistic fuels with and without an additional reforming catalyst. We also discuss the performance improvement of conventional cermet-based SOFCs by adding reforming catalysts via the infiltration method. This information can be directly applied to future MS-SOFC applications. Furthermore, this review article proposes possible novel methods such as direct precursor infiltration, catalyst-anode premixing, and atomic layer deposition methods to introduce the reforming catalyst into a MS-SOFC for improving its initial electrochemical performance and long-term stability under hydrocarbon and logistics fuel. 相似文献
2.
This paper presents the performance analysis of a planar solid-oxide fuel cell (SOFC) under direct internal reforming conditions. A detailed solid-oxide fuel cell model is used to study the influences of various operating parameters on cell performance. Significant differences in efficiency and power density are observed for isothermal and adiabatic operational regimes. The influence of air number, specific catalyst area, anode thickness, steam to carbon (s/c) ratio of the inlet fuel, and extend of pre-reforming on cell performance is analyzed. In all cases except for the case of pre-reformed fuel, adiabatic operation results in lower performance compared to isothermal operation. It is further discussed that, though direct internal reforming may lead to cost reduction and increased efficiency by effective utilization of waste heat, the efficiency of the fuel cell itself is higher for pre-reformed fuel compared to non-reformed fuel. Furthermore, criteria for the choice of optimal operating conditions for cell stacks operating under direct internal reforming conditions are discussed. 相似文献
3.
Qingping Fang Ludger Blum Peter Batfalsky Norbert H. Menzler Ute Packbier Detlef Stolten 《International Journal of Hydrogen Energy》2013
Forschungszentrum Jülich has demonstrated SOFC stacks and systems ranging from 50 W to 20 kW. Previous studies have shown the reproducible stable long-term performance of the F10-design short stacks developed in Forschungszentrum Jülich. Within this work, a 2.5 kW F20-stack consisting of eighteen cells was assembled, and tested at a furnace temperature of 700 °C mainly with the simulated reformate gas, which corresponds to 10% pre-reforming of liquefied natural gas (LNG). The current density and fuel utilization were mostly kept at 0.5 A cm−2 and 70%, respectively. The purpose was to investigate the behavior of the stack in the kW-range for at least 5000 h with internal reforming of LNG or methane at a fuel utilization of at least 60%. A voltage degradation rate of around 0.3%/1000 h was obtained during the operation with pre-reformed LNG. The stack performance under normal working conditions and an unplanned redox cycle, as well as the results from post mortem analysis are discussed. 相似文献
4.
P. Dokmaingam J.T.S. Irvine S. Assabumrungrat S. Charojrochkul N. Laosiripojana 《International Journal of Hydrogen Energy》2010,35(24):13271-13279
Mathematical models of an Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) with indirect internal reforming operation (IIR-SOFC) fueled by methane were developed. The models were based on a steady-state heterogeneous two-dimensional tubular-design SOFC. The benefit in adding oxygen to methane and steam as the feed for autothermal reforming reaction on the thermal behavior and SOFC performance was simulated. The results indicated that smoother temperature gradient with lower local cooling at the entrance of the reformer channel can be achieved by adding a small amount of oxygen. However, the electrical efficiency noticeably decreased when too high oxygen content was added due to the loss of hydrogen generation from the oxidation reaction; hence, the inlet oxygen to carbon (O/C) molar ratio must be carefully controlled. Another benefit of adding oxygen is the reduction of excess steam requirement, which could reduce the quantity of heat required to generate the steam and eventually increases the overall system performance. It was also found that the operating temperature strongly affects the electrical efficiency achievement and temperature distribution along the SOFC system. By increasing the operating temperature, the system efficiency increases but a significant temperature gradient is also detected. The system with a counter-flow pattern was compared to that with a co-flow pattern. The co-flow pattern provided smoother temperature gradient along the system due to better matching between the heat supplied from the electrochemical reaction and the heat required for the steam reforming reaction. However, the electrical efficiency of the co-flow pattern is lower due to the higher cell polarization at a lower system temperature. 相似文献
5.
Oleg Smorygo Vitali Mikutski Alexander Marukovich Yuri Vialiuha Alexander Ilyushchanka Natalia Mezentseva Galina Alikina Zakhar Vostrikov Yulia Fedorova Vladimir Pelipenko Rimma Bunina Vladislav Sadykov 《International Journal of Hydrogen Energy》2009
Open cell metal foams made from Ni, Fe–Cr steel and Ni–Al intermetallic were studied as candidate catalyst supports for the internal indirect methane steam reforming. All the samples exhibited good corrosive resistance during 500–1000 h testing in H2–H2O–Ar environment at 600 °C. NiO/8YSZ composite based catalysts doped with fluorite-like (Pr0.3Ce0.35Zr0.35O2) or perovskite-like (La0.8Pr0.2Mn0.2Cr0.8O3) complex oxides with high lattice oxygen mobility and promoted with Pt or Ru were prepared and deposited on the foam-structure supports. Both good catalyst adhesion and stable catalyst performance were achieved in the case of the Ni–Al foam supported catalysts. The Fe–Cr support reacted with the catalytic active components resulting in fast catalyst deactivation. The foam supported catalyst performance was compared with the same catalyst prepared in a form of 0.25 mm fraction. Porous supports with different porosities were prepared by the metal foam deformation and the catalyst performance depending on the support porosity (75–95%) was studied. 相似文献
6.
This study investigated the possible use of methane, methanol, and ethanol with steam as a direct feed to Ni/YSZ anode of a direct internal reforming Solid Oxide Fuel Cell (DIR-SOFC). It was found that methane with appropriate steam content can be directly fed to Ni/YSZ anode without the problem of carbon formation, while methanol can also be introduced at a temperature as high as 1000 °C. In contrast, ethanol cannot be used as the direct fuel for DIR-SOFC operation even at high steam content and high operating temperature due to the easy degradation of Ni/YSZ by carbon deposition. From the steam reforming of ethanol over Ni/YSZ, significant amounts of ethane and ethylene were present in the product gas due to the incomplete reforming of ethanol. These formations are the major reason for the high rate of carbon formation as these components act as very strong promoters for carbon formation. 相似文献
7.
Praveen K. Cheekatamarla Caine M. FinnertyYanhai Du Juan JiangJian Dong P.G. DewaldC.R. Robinson 《Journal of power sources》2009
Solid oxide fuel cells (SOFCs) constitute an attractive power-generation technology that converts chemical energy directly into electricity while causing little pollution. NanoDynamics Energy (NDE) Inc. has developed micro-tubular SOFC-based portable power generation systems that run on both gaseous and liquid fuels. In this paper, we present our next generation solid oxide fuel cells that exhibit total efficiencies in excess of 60% running on hydrogen fuel and 40+% running on readily available gaseous hydrocarbon fuels such as propane, butane etc. The advanced fuel cell design enables power generation at very high power densities and efficiencies (lower heating value-based) while reforming different hydrocarbon fuels directly inside the tubular SOFC without the aid of fuel pre-processing/reforming. The integrated catalytic layered SOFC demonstrated stable performance for >1000 h at high efficiency while running on propane fuel at sub-stoichiometric oxygen-to-fuel ratios. This technology will facilitate the introduction of highly efficient, reliable, fuel flexible, and lightweight portable power generation systems. 相似文献
8.
Deposition of carbon on conventional anode catalysts and formation of large temperature gradients along the cell are the main barriers for implementing internal reforming in solid oxide fuel cell (SOFC) systems. Mathematical modeling is an essential tool to evaluate the effectiveness of the strategies to overcome these problems. In the present work, a three-dimensional model for a planar internal reforming SOFC is developed. A co-flow system with no pre-reforming, methane fuel utilization of 75%, voltage of 0.7 V and current density of 0.65 A cm−2 was used as the base case. The distributions of both temperature and gas composition through the gas channels and PEN (positive electrode/electrolyte/negative electrode) structure were studied using the developed model. The results identified the most susceptible areas for carbon formation and thermal stress according to the methane to steam ratio and temperature gradients, respectively. The effects of changing the inlet gas composition through recycling were also investigated. Recycling of the anode exhaust gas, at an optimum level of 60% for the conditions studied, has the potential to significantly decrease the temperature gradients and reduce the carbon formation at the anode, while maintaining a high current density. 相似文献
9.
《International Journal of Hydrogen Energy》2022,47(90):38372-38385
High-entropy alloy (HEA) anode and reforming catalyst, supported on gadolinium-doped ceria (GDC), have been synthesized and evaluated for the steam reforming of methane under SOFC operating conditions using a conventional fixed-bed catalytic reactor. As-synthesized HEA catalysts were subjected to various characterization techniques including N2 adsorption/desorption analysis, SEM, XRD, TPR, TPO and TPD. The catalytic performance was evaluated in a quartz tube reactor over a temperature range of 700–800 °C, pressure of 1 atm, gas hourly space velocity (GHSV) of 45,000 h?1 and steam-to-carbon (S/C) ratio of 2. The conversion and H2 yield were calculated and compared. HEA/GDC exhibited a lower conversion rate than those of Ni/YSZ and Ni/GDC at 700 °C, but showed superior stability without any sign of carbon deposition unlike Ni base catalyst. HEA/GDC was further evaluated as an anode in a SOFC test, which showed high electrochemical stability with a comparable current density obtained on Ni electrode. The SOFC reported low and stable electrode polarization. Post-test analysis of the cell showed the absence of carbon at and within the electrode. It is suggested that HEA/GDC exhibits inherent robustness, good carbon tolerance and stable catalytic activity,` which makes it a potential anode candidate for direct utilization of hydrocarbon fuels in SOFC applications. 相似文献
10.
Jean-Marie Klein 《Journal of power sources》2009,193(1):331-337
A solid oxide fuel cell was designed to be operated with pure hydrocarbons, without additive or carrier gas, in order to bring technological simplifications, cost reductions and to extend the fuel flexibility limits. The cell was built-up from a conventional cell (LSM/YSZ/Ni-YSZ), to which was added a Ir-CeO2 catalyst layer at the anode side and an original current collecting system. The cell was first operated with steam in gradual internal reforming (GIR) conditions (R = [H2O]/[CH4] < 1) with carrier gas at the anode. The optimal operating parameters were determined in terms of flow rates, cell potential, and fuel utilisation. The cell was finally operated with pure dry methane at 900 °C at 0.6 V yielding current density of about 0.1 A cm−2 at max power for 120 h. Small but abrupt deterioration of the performances was observed, but no carbon deposition. Electrical and chemical analysis of this degradation are provided.At total, the fuel cell was operated for more than 200 h in pure dry methane, demonstrating that gradual internal reforming actually occurred efficiently in the anode compartment, which make possible operation without reforming agent such as H2O or CO2 for other hydrocarbon fuels. 相似文献
11.
The application of heterogeneous catalysis has an important role to play in the successful commercial development of solid oxide fuel cell (SOFC) technology. In this paper, we present an SOFC that combines a catalyst layer with a conventional anode, allowing internal reforming via partial oxidation (POX) of fuels such as methane, propane, butane, biomass gas, etc., without coking and yielding stable power output. The catalyst layer is fabricated on the anode simply by catalyst support coating and reforming catalyst impregnation. The composition and microstructure of catalyst support layer as well as the catalyst composition was easily tailored to meet the demand of in situ reforming. The usage of catalyst layer as an integrated part of the traditional SOFC will provide a simple low-cost power-generating system at substantially higher fuel efficiency and faster start-ups, and may accelerate the application of SOFCs through the direct use of hydrocarbon fuels. 相似文献
12.
Direct feeding of biogas to SOFC, which is derived from municipal organic wastes, has been investigated as a carbon-neutral renewable energy system. CH4/CO2 ratio in the actual biogas fluctuated between 1.4 and 1.9 indicating biogas composition is strongly affected by the kinds of organic wastes and the operational conditions of methane fermentation. Using anode-supported button cells, stable operation of biogas-fueled SOFC was achieved with the internal reforming mode at 800 °C. Cell voltage above 0.8 V was recorded over 800 h at 200 mA cm−2. It has been revealed that air addition to actual biogas reduced the risk of carbon formation and led to more stable operation without compromising cell voltage due to the lowering of anodic overvoltage. 相似文献
13.
《International Journal of Hydrogen Energy》2023,48(12):4649-4664
The distributed power generation of methanol steam reforming reactor combined with solid oxide fuel cell (SOFC) has the characteristics of outstanding economic advantages. In this paper, a methanol steam reforming reactor was designed which integrates catalyst combustion, vaporization and reforming. By catalyst combustion, it can achieve stable operation to supply fuel for kW-class SOFC in real time without additional heating equipment. The optimal operating condition of the reforming reactor is 523–553 K, and the steam to carbon ratio (S/C) is 1.2. To study the reforming performance, methanol steam reforming (MSR), methanol decomposition (MD), water-gas shift (WGS) were considered. Operating temperature is the greatest factor affecting reforming performance. The higher the reaction temperature, the lower the H2 and CO2, the higher the CO and the methanol conversion rate. The methanol conversion rate is up to 95.03%. The higher the liquid space velocity (LHSV), the lower the methanol conversion rate, the lowest is 90.7%. The temperature changes of the reforming reactor caused by the load change of stack takes about 30 min to reach new balance. Local hotspots within the reforming reactor lead to an excessive local temperature to test a small amount of CH4 in the reforming gas. The methanation reaction cannot be ignored at the operating temperature. The reforming gas contains 70–75% H2, 3–8% CO, 18–22% CO2 and 0.0004–0.3% CH4. Trace amounts of C2H6 and C2H4 are also found in some experiments. The reforming reactor can stably supply the fuel for up to 1125 W SOFC. 相似文献
14.
《International Journal of Hydrogen Energy》2020,45(55):30882-30897
Oxidation behavior of porous P434L ferritic stainless steel, used for the fabrication of metal-supported solid oxide fuel cells (MS-SOFC), is studied under anodic and cathodic atmospheres. Temperature- and atmosphere-dependence is determined for as-sintered and pre-oxidized stainless steel. Pre-oxidation reduced the long-term oxidation rate. For pre-oxidized samples, the oxidation rate in air exceeds that in humid hydrogen for temperatures above 700 °C. The influence of PrOx, LSCF-SDC, and Ni-SDC coatings is also examined. The coatings do not dramatically impact oxide scale growth. Oxidation in C-free and C-containing anodic atmospheres is similar. Addition of CO2, CH4, and CO to humidified hydrogen to simulate ethanol reformate does not significantly impact oxidation behavior. Cr transpiration in humid air is greatly reduced by the PrOx coating, and a PrCrO3 reaction product is observed throughout the porous structure. A dense and protective chromia-based scale forms on steel samples during oxidation in all conditions. A thin silica enriched oxide layer also forms at the metal-scale interface. In general, the oxidation behavior at 700 °C is found to be acceptable. 相似文献
15.
Degradation mechanism of the metal-supported SOFCs with NiO-Ce0.8Sm0.2O2−δ(NiO-SDC) as anode, SDC as electrolyte, Sm0.5Sr0.5CoO3 (SSCo)-SDC composite as cathode was addressed with an emphasis on metal oxidation and thermal expansion mismatch. The diagnosis was based on an improved equivalent circuit model combined with impedance, microstructure and composition analysis of the cell and cell components. The impedance diagnosis indicates that the high contact resistance is a prominent factor impeding the performance of metal-supported SOFCs at 450-600 °C. The observed oxide scale at the interface between metallic substrate and anode, and, the weak bonding between the electrolyte and the cathode may be responsible for the high contact resistances. Energy-dispersive X-ray spectroscopy (EDX) was applied to analyze the change of surface composition of metallic substrate joined with anode in order to elucidate the formed oxide scale. In addition, based on the improved equivalent circuit model, internal shorting current of the cell due to electronic conduction was evaluated. 相似文献
16.
This study investigates the performance of a standard Ni-YSZ anode supported cell under ethanol steam reforming operating conditions. Therefore, the fuel cell was directly operated with a steam/ethanol mixture (3 to 1 molar). Other gas mixtures were also used for comparison to check the conversion of ethanol and of reformate gases (H2, CO) in the fuel cell. The electrochemical properties of the fuel cell fed with four different fuel compositions were characterized between 710 and 860 °C by I-V and EIS measurements at OCV and under polarization. In order to elucidate the limiting processes, impedance spectra obtained with different gas compositions were compared using the derivative of the real part of the impedance with respect of the natural logarithm of the frequency.Results show that internal steam reforming of ethanol takes place significantly on Ni-YSZ anode only above 760 °C. Comparisons of results obtained with reformate gas showed that the electrochemical cell performance is dominated by the conversion of hydrogen. The conversion of CO also occurs either directly or indirectly through the water-gas shift reaction but has a significant impact on the electrochemical performance only above 760 °C. 相似文献
17.
《International Journal of Hydrogen Energy》2023,48(35):12949-12957
Metal-supported solid oxide electrolysis cells (MS-SOECs) operating at 600–700 °C are attractive for storage of intermittent renewable electricity from solar and wind energy due to their advantages of easy sealing and fast startup. This paper reports on the fabrication of MS-SOECs consisting of dense scandium stabilized zirconia (SSZ) electrolytes, Ce0.8Sm0.2O2−δ (SDC)/Ni impregnated 430L/SSZ cathodes and SmBa0.5Sr0.5Co2O5+δ (SBSCO) impregnated SSZ anodes supported on porous 430L alloys. Such cells demonstrated excellent electrolysis performance with current densities at 650 °C as high as 0.73 A⋅cm−2 at 1.3 V in 50% H2O-50% H2 and 0.95 A⋅cm−2 at 1.5 V in 90% CO2-10% CO. Electrochemical impedance measurements indicated that the cell performance was largely limited by the ohmic losses for steam electrolysis and by the cathodic reduction reactions for CO2 electrolysis, especially at reduced temperatures. Pronounced degradation was observed for both steam and CO2 electrolysis over the preliminary 90-h stability measurements at 600 °C. SEM examination and EDS mapping of measured cells showed significant aggregation and coarsening of impregnated Ni particles, resulting in smaller activities for H2O and CO2 reduction reactions. As evidenced by the almost unaltered ohmic resistances over the measurement durations, the 430L stainless steel substrates demonstrate excellent resistances against corrosions from H2O and CO2 and thus show great promise for applications in reduced-temperature MS-SOECs. 相似文献
18.
Ronak Patel Milind Joshipura 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2018,40(21):2590-2598
Thermodynamic analysis of hydrogen production by steam reforming and autothermal reforming of bio-butanol was investigated for solid oxide fuel cell applications. The effects of reformer operating conditions, e.g., reformer temperature, steam to carbon molar ratio, and oxygen to carbon molar ratio, were investigated with the objective to maximize hydrogen production and to reduce utility requirements of the process and based on which favorable conditions of reformer were proposed. Process flow diagram for steam reforming and autothermal reforming integrated with solid oxide fuel cell was developed. Heat integration with pinch analysis method was carried out for both the processes at favorable reformer conditions. Power generation, electrical efficiency, useful energy for co-generation application, and utility requirements for both the processes were compared. 相似文献
19.
The internal reforming of methane in a solid oxide fuel cell (SOFC) is investigated and modeled for flow conditions relevant to operation. To this end, measurements are performed on anode-supported cells (ASC), thereby varying gas composition (yCO = 4–15%, yH2=5−17%, yCO2=6−18%, yH2O=2−30%, yCH4=0.1−20%) and temperature (600–850 °C). In this way, operating conditions for both stationary applications (methane-rich pre-reformate) as well as for auxiliary power unit (APU) applications (diesel-POX reformate) are represented. The reforming reaction is monitored in five different positions alongside the anodic gas channel by means of gas chromatography. It is shown that methane is converted in the flow field for methane-rich gas compositions, whereas under operation with diesel reformate the direction of the reaction is reversed for temperatures below 675 °C, i.e. (exothermic) methanation occurs along the anode. Using a reaction model, a rate equation for reforming could be derived which is also valid in the case of methanation. By introducing this equation into the reaction model the methane conversion along a catalytically active Ni-YSZ cermet SOFC anode can be simulated for the operating conditions specified above. 相似文献
20.
Jeong-Se Suh Ming-Tsang LeeRalph Greif Costas P. Grigoropoulos 《International Journal of Hydrogen Energy》2009
An experimental and theoretical study of steam reforming of methanol is carried out in a packed-bed microreactor with internal heating. Experimental results of the methanol conversion and carbon monoxide concentration in an internally heated reformer are compared with those of an externally heated reformer. Higher methanol conversion and carbon monoxide concentration are obtained for internal heating at the same conditions. The results show the conversion efficiency of methanol and CO concentration increase with increasing internal heating rate over the range of operating conditions. A correlation for the conversion efficiency of methanol has been obtained as a function of the internal heating rate and a dimensionless time parameter which represents the ratio of the characteristic time of the methanol flow to the time for chemical reaction. 相似文献