首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The refrigerated air curtain used for cavity insulation in the present study is an idealization of the refrigerated air curtain used in supermarket food display cabinets. The thermal insulation performance of refrigerated air curtains is very important for perishable food storage and energy saving for refrigerated display cabinets. Thermal insulation ability of recirculated refrigerated air curtains was numerically studied in the present work. The results show that the refrigerated air curtains are negatively buoyant jets and tend to flow toward the inside cabinet due to stack pressure, so the initial momentum must be sufficiently large to sustain the pressure difference across the air curtain and assure the thermal insulation. The length–width ratio and the discharge angle of the air curtains, the height–depth ratio of the cavity and the dimension and position of the inside shelves would greatly influence the thermal insulation performance of air curtains, therefore were extensively discussed. The maximum Richardson numbers or the optimum parameter selections in each situation were presented for practical design of refrigerated air curtains used in multi-deck display cabinets.  相似文献   

2.
In this investigation, a numerical simulation using a finite volume scheme is carried out for a laminar steady mixed convection problem in a two-dimensional square enclosure of width and height (L), with a rotating circular cylinder of radius (R = 0.2 L) enclosed inside it. The solution is performed to analyze mixed convection in this enclosure where the left side wall is subjected to an isothermal temperature higher than the opposite right side wall. The upper and lower enclosure walls are considered adiabatic. The enclosure under study is filled with air with Prandtl number is taken as 0.71. Fluid flow and thermal fields and the average Nusselt number are presented for the Richardson numbers ranging as 0, 1, 5 and 10, while Reynolds number ranging as 50, 100, 200 and 300. The effects of various locations and solid-fluid thermal conductivity ratios on the heat transport process are studied in the present work. The results of the present investigation explain that increase in the Richardson and Reynolds numbers has a significant role on the flow and temperature fields and the rotating cylinder locations have an important effect in enhancing convection heat transfer in the square enclosure. The results explain also, that the average Nusselt number value increases as the Reynolds and Richardson numbers increase and the convection phenomenon is strongly affected by these parameters. The results showed a good agreement with further published works.  相似文献   

3.
Fluid flow and heat transfer characteristics of differentially heated lid driven cavities are numerically modeled and analyzed in the present study. One‐, two‐, and four‐sided lid driven cavity configurations are considered with the vertical walls being maintained at different temperatures and the horizontal walls being thermally insulated. Eight different cavity configurations are considered depending on the direction of wall motion. The Prandtl number Pr is taken to be 0.7, the Grashof number is taken to be 104, while two values for the Richardson number Ri are considered, 0.1 and 10. It is found that both the Richardson number and the cavity configuration affect the heat and fluid flow characteristics in the cavity. It is concluded that for Ri=0.1, a four‐sided driven cavity configuration with all walls rotating in the same direction would triple the value of the average Nusselt number at the cold wall when compared to a one‐sided driven cavity configuration. However, for Ri=10, the cavity configuration has minimal effect and all eight cases result in an average Nusselt number value at the cold wall ranging between 1.3 and 1.9. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience. wiley.com ). DOI 10.1002/htj.20264  相似文献   

4.
The aim of this work is to study laminar mixed convection heat transfer characteristics within an obstructed enclosure by using the Lattice Boltzmann method. Flow is driven by a top cold lid while other walls are stationary and adiabatic. Hot cylinders are located at different places inside the cavity to explore the best arrangement. Comparison of streamlines, isotherms, average Nusselt number are presented to evaluate the influence of Richardson number and location of cylinders on flow field and heat transfer. Results indicate that heat transfer decreases with a rise of Richardson number for all considered arrays of cylinders. Among them, horizontally‐located cylinders at the top of the cavity have the greatest heat transfer at all Richardson numbers. Horizontally located cylinders at the bottom of the cavity have the lowest heat transfer at Richardson numbers of 0.1 and 1 while the lowest heat transfer rate belongs to cross diagonal located cylinders at a Richardson number of 10.  相似文献   

5.
In this study, heat transfer from a square cavity in the presence of a thin inclined adiabatic fin is estimated using inputs–outputs generated from a CFD code with a fuzzy based identification procedure. The Reynolds number based on cavity length is 300 and the Richardson number is varied between 1 and 30. The top and bottom walls of the cavity are kept at constant temperature while the vertical walls are assumed to be adiabatic. The fin height, fin inclination angle, and Richardson number are considered as the input and the spatial averaged Nusselt number is taken as the output for the fuzzy model. Two data sets are used. One data set which contains 45 cases is used for estimation and another data set which contains 10 cases (not used in estimation) is used for validation purposes. The predictions using fuzzy model compare well with the CFD computations.  相似文献   

6.
Laminar mixed convection characteristics in a square cavity with an isothermally heated square blockage inside have been investigated numerically using the finite volume method of the ANSYS FLUENT commercial CFD code. Various different blockage sizes and concentric and eccentric placement of the blockage inside the cavity have been considered. The blockage is maintained at a hot temperature, Th, and four surfaces of the cavity (including the lid) are maintained at a cold temperature, Tc, under all circumstances. The physical problem is represented mathematically by sets of governing conservation equations of mass, momentum, and energy. The geometrical and flow parameters for the problem are the blockage ratio (B), the blockage placement eccentricities (?x and ?y), the Reynolds number (Re), the Grashof number (Gr), and the Richardson number (Ri). The flow and heat transfer behavior in the cavity for a range of Richardson number (0.01–100) at a fixed Reynolds number (100) and Prandtl number (0.71) is examined comprehensively. The variations of the average and local Nusselt number at the blockage surface at various Richardson numbers for different blockage sizes and placement eccentricities are presented. From the analysis of the mixed convection process, it is found that for any size of the blockage placed anywhere in the cavity, the average Nusselt number does not change significantly with increasing Richardson number until it approaches the value of the order of 1 beyond which the average Nusselt number increases rapidly with the Richardson number. For the central placement of the blockage at any fixed Richardson number, the average Nusselt number decreases with increasing blockage ratio and reaches a minimum at around a blockage ratio of slightly larger than 1/2. For further increase of the blockage ratio, the average Nusselt number increases again and becomes independent of the Richardson number. The most preferable heat transfer (based on the average Nusselt number) is obtained when the blockage is placed around the top left and the bottom right corners of the cavity.  相似文献   

7.
In the present numerical investigation, a transient numerical analysis for natural convection in air, between two vertical parallel plates (channel), heated at uniform heat flux, with adiabatic parallel plates downstream (chimney), is carried out by means of the finite volume method. The analyzed transient problem is two-dimensional and laminar. The computational domain is made up of the channel-chimney system, and two reservoirs, placed upstream the channel and downstream the chimney. The reservoirs are important because they simulate the thermal and fluid dynamic behaviors far away from the inflow and outflow regions. Results are presented in terms of wall temperature and air velocity profiles. They are given at different Rayleigh number and expansion ratios (chimney gap/channel gap) for a fixed channel aspect ratio (channel height/channel gap) equal to 10 and extension ratio (channel-chimney height/channel height) equal to 2.0. Wall temperature profiles over a period show the presence of overshoots and undershoots. The comparison among the maximum wall temperatures shows that the simple channel is the most critical configuration at steady state condition, but it is the best configuration during the transient heating at the first overshoot. As indicated by the temperature profiles, average Nusselt number profiles over a period of consideration show minimum and maximum values and oscillations before the steady state. Stream function fields allow to observe the development of fluid dynamic structures inside the channel-chimney system, particularly how and when the cold inflow is present and develops.  相似文献   

8.
Mixed convection in a ventilated rectangular cavity with a horizontal strip occupied by two media of different permeability is studied by using the finite-volume method. The effect of the parameters that govern the problem, the Reynolds number (200–500), the Richardson number (0.1–10), the Darcy number (1.E–6–1.E–2), permeability ratio (0.01–100), aspect ratio of the cavity (1–1.5), and direction of flow with or against gravity, is investigated. From the numerical results, the influence of Darcy and Reynolds numbers on the fluid mechanics can be inferred. When the cold fluid flow is descending, the fluid–porous medium heat transfer increases because the hotter fluid is located in the upper zones of the cavity. As the aspect ratio (height/width) increases from 0.67 to 1.5, both the Nusselt number (7.5 < Nu < 27) and the friction coefficient increase. The friction coefficient on the walls is greater when Re = 500 and Ri = 10 in the two directions of flow. As the Darcy number increases, the velocity gradients increase near the walls, causing an increase of the friction coefficient (0 < Cf Re < 47).  相似文献   

9.
In this paper, a numerical study has been carried out to investigate the steady-state mixed convection around two heated horizontal cylinders in a square two-dimensional enclosure. The cylinders are located at the middle of the enclosure height and the walls of the cavity are adiabatic. Streamlines and isotherms are produced and the effects of cylinder diameter, Reynolds number, and Richardson number on the heat transfer characteristics are numerically analyzed. The average Nusselt number over the surface of cylinders and average nondimensional temperature in the enclosure are also presented. The results show that both heat transfer rates from the heated cylinders and the dimensionless fluid temperature in the enclosure increase with increasing Richardson number and cylinder diameter. However, the trend of average Nusselt number and nondimensional temperature variation is completely opposite when Reynolds number increases. In addition, by increasing the cylinders diameter and Richardson number, the left cylinder is less affected by the inlet flow than right one.  相似文献   

10.
Mixed convection heat transfer in a lid-driven cavity with a rotating cylinder was analyzed numerically for two important parameters - Richardson number, the non-dimensional angular velocity of the cylinder, and the direction of rotation using the commercial software, ADINA. The results from these simulations were validated using an open-source spectral element code, Nek5000. The results of this investigation were presented in terms of streamlines, isotherms, and average and local Nusselt numbers. The present results illustrated that the average Nusselt number was found to depend on the direction of the angular velocity. The average Nusselt number increased with an increase in the clockwise angular velocity of the cylinder for various Richardson numbers. However, it decreased with an increase in the counterclockwise until reached a critical velocity where average Nusselt number increased with an increase in the angular velocity. This study illustrated that the maximum heat transfer can be achieved when placing a rotating cylinder inside a cavity compared with non-rotating cylinder.  相似文献   

11.
This article presents a numerical investigation of unsteady laminar mixed convection heat transfer in a two-dimensional square cavity. The cavity is configured such that one of the vertical walls is cooled and slides either with a constant speed or with a sinusoidal oscillation. A portion of the opposite stationery wall is heated by a constant temperature heat source while, the remaining walls of the cavity are thermally insulated. Different configurations of sliding wall movement and a series of Richardson numbers and Strouhal numbers are tested. The results indicate that the direction and magnitude of the sliding wall velocity affect the heat transfer rate. At low Richardson numbers, the average heat transfer rate for the cavity with an oscillating wall is found to be lower compared to that for the cavity with a constant velocity wall. In addition, at a fixed Richardson number, as the Strouhal number decreases the oscillation frequency of average Nusselt number on the vertical walls decreases; however, the oscillation amplitude of average Nusselt number increases.  相似文献   

12.
Laminar natural convection heat transfer in a differentially heated cavity with two thin porous fins attached to the hot wall and bottom insulated surface was studied numerically for various pertinent parameters. Such parameters include Richardson number, Darcy number, thermal conductivity ratio, and location of the porous fin. The left wall of the cavity is assumed to be uniformly heated while the right wall is kept at a lower temperature. In addition, the horizontal walls of the cavity were considered insulated. Furthermore, the governing transport equations within the porous media were written according to the volume-average theory. The governing equations are solved using a finite element formulation based on the Galerkin method of weighted residuals. The results of this investigation showed that the presence of a horizontal porous fin increases the average Nusselt number when compared with the differentially heated cavity for various Richardson numbers and thermal conductivity ratios. However, a vertical porous fin attached to the bottom insulated surface exhibited a lower average Nusselt number than the no-fin case.  相似文献   

13.
The effect of aiding/opposing buoyancy on the two-dimensional upward flow and heat transfer around a heated/cooled cylinder of square cross section is studied in this work. The finite-volume-based commercial computational fluid dynamics (CFD) software FLUENT is used for the numerical simulation. The influence of aiding/opposing buoyancy is studied for Reynolds and Richardson numbers ranges of 50 to 150 and –1 to 1, respectively, and the blockage parameters of 2% and 25%. The flow exhibits unsteady periodic characteristics in the chosen range of Reynolds numbers (except for Reynolds number of 50 and blockage parameter of 25%) for the forced convective cases (Richardson number of 0). However, the vortex shedding is observed to stop completely at some critical value of Richardson number for a particular Reynolds number, below which the shedding of vortices into the stream is quite prominent. Representative streamlines and isotherm patterns for different blockage parameters are systematically presented and discussed. The critical Richardson and average Nusselt numbers are plotted against the Reynolds and Richardson numbers, respectively, to elucidate the role of thermal buoyancy on flow and heat transfer characteristics. It is observed that the vortex shedding frequency (Strouhal number) increases with increased heating and suddenly reduces to zero at the critical Richardson number. The critical Richardson number is again found to increase with Reynolds number for a particular blockage ratio, and the higher the blockage ratio, the less is the critical Richardson number. The results obtained from the commercial solver are extensively validated with the available numerical results in the literature and an excellent agreement is observed.  相似文献   

14.
采用热线风速仪,首次在四角切圆燃烧的流场中,对不同高宽比的一次风矩形喷射流在流场中的刚性及湍流特性进行了详细的试验研究,并分析了在不同高宽比下矩形喷嘴射流在四角切圆复杂流场中的偏转及稳燃机理,得到了的四角切圆燃烧流场中一次风矩形喷嘴的最佳高宽比,对工程设计及应用都有较好的参考价值。  相似文献   

15.
The physical model considered here is a lid-driven enclosure with bottom heating and top cooling conditions, and a heat generating circular body is placed at the center. The vertical walls of the cavity are kept thermally insulated, and the top lid moves at a constant speed. The steady two-dimensional governing equations for the physical problem are transformed in a dimensionless form with dimensionless governing parameters that decide the fluid flow and heat transfer characteristics in the system. The solution of these transport equations is obtained numerically with the finite element approach using the Galerkin method of weighted residuals. The parametric study has been carried out for variation of the heat generation parameters, the Reynolds numbers, solid-fluid thermal conductivity ratios as well as the Richardson numbers. The working fluid is assigned as air with a Prandtl number of 0.71 throughout the simulation. Results are presented in the form of streamlines, isotherms, average Nusselt number, bulk temperature, and drag force for the afore mentioned parameters. The numerical results indicate the strong influence of the mentioned parameters on the flow structure and heat transfer as well as average Nusselt number, average bulk temperature, and drag force. An optimum combination of the governing parameters would result in higher heat transfer and lower drag force.  相似文献   

16.
Three dimensional analyses of laminar mixed convection and entropy generation in a cubic lid-driven cavity have been performed numerically. Left side of cavity moves in + y (Case I) or −y (Case II) direction. The cavity is heated from left side and cooled from right while other surfaces are adiabatic. Richardson number is the main parameter which changes from 0.01 to 100. Prandtl number is fixed at Pr = 0.71. Results are presented by isotherms, local and mean Nusselt number, entropy generation due to heat transfer and fluid friction, velocity vectors and Bejan number. Total entropy generation contours are also presented. It is found that direction of lid is an effective parameter on both entropy generation and heat and fluid flow for low values of Richardson number but it becomes insignificant at high Richardson number.  相似文献   

17.
Mixed convection in an open cavity with a heated wall bounded by a horizontally insulated plate is studied numerically. Three basic heating modes are considered: (a) the heated wall is on the inflow side (assisting flow); (b) the heated wall is on the outflow side (opposing flow); and (c) the heated wall is the horizontal surface of the cavity (heating from below). Mixed convection fluid flow and heat transfer within the cavity is governed by the buoyancy parameter, Richardson number (Ri), and Reynolds number (Re). The results are reported in terms of streamlines, isotherms, wall temperature, and the velocity profiles in the cavity for Ri=0.1 and 100, Re=100 and 1000, and the ratio between the channel and cavity heights (H/D) is in the range 0.1-1.5. The present results show that the maximum temperature values decrease as the Reynolds and the Richardson numbers increase. The effect of the H/D ratio is found to play a significant role on streamline and isotherm patterns for differentheating configurations. The present investigation shows that the opposing forced flow configuration has the highest thermal performance in terms of both maximum temperature and average Nusselt number.  相似文献   

18.
The present work deals with numerical modeling of mixed convection flow in a two-sided lid driven inclined square enclosure filled with water-Al2O3 nanofluid. The limiting cases of a cavity heated from below and cooled from above and the one differentially heated are recovered respectively for inclination angles 0° and 90°. The moving walls of the cavity are pulled in opposite directions with the same velocity and maintained at constant but different temperatures while the remaining walls are kept insulated. The numerical resolution of the studied problem is based on the lattice Boltzmann method. A parametric study is conducted and a set of graphical results is presented and discussed to illustrate the effects of the presence of nanoparticles and enclosure inclination angle on fluid flow and heat transfer characteristics. The governing parameters of this problem are the Richardson number (varied from 0.1 to 106), the nanoparticles volume fraction (varied from 0 to 0.04) and the inclination angle (varied from 0° to 180°). The critical conditions leading to the transition from monocellular flow to multicellular flow and vice versa are determined. In the common ranges of Richardson number and inclination angle where both monocellular and tri-cellular patterns coexist, the heat transfer is seen to be strongly reduced by the latter.  相似文献   

19.
The influence of cold air jet injection upon filmcooling of combustion chamber walls has been investigated by simulation. The experiments, in which a row of cold air jets is injected perpendicularly to the film cooled test chamber wall, show considerable decreases of the film cooling effectiveness downstream of the jet exit. The same behavior occurs in real combustion chambers of aircraft gas turbine engines. The tests are selected to represent combinations of geometries and flow variables (except the temperature ratios) which are pertinent to gas turbine combustor design. The present investigations cover effectiveness measurements for various combinations of the parameters: a) velocity ratio coolant film to mainstream b) velocity ratio jet to mainstream c) dimensionless distance between coolant film and jet exit d) spacing ratio e) ratio jet diameter to slot height f) ratio lip thickness to slot height.  相似文献   

20.
The present work is aimed to study mixed convection heat transfer characteristics within a ventilated square cavity having a heated hollow cylinder. The heated hollow cylinder is placed at the center of the cavity. In addition, the wall of the cavity is assumed to be adiabatic. Flows are imposed through the inlet at the bottom of the left wall and exited at the top of the right wall of the cavity. The present study simulates a practical system such as air-cooled electronic equipment with a heat component or an oven with heater. Emphasis is sited on the influences of the cylinder diameter and the thermal conductivity of the cylinder in the cavity. The consequent mathematical model is governed by the coupled equations of mass, momentum and energy and solved by employing Galerkin weighted residual method of finite element formulation. A wide range of pertinent parameters such as Reynolds number, Richardson number, cylinder diameter and the solid-fluid thermal conductivity ratio are considered in the present study. Various results such as the streamlines, isotherms, heat transfer rates in terms of the average Nusselt number and average fluid temperature in the cavity are presented for different aforesaid parameters. It is observed that the cylinder diameter has significant effect on both the flow and thermal fields but the solid-fluid thermal conductivity ratio has significant effect only on the thermal field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号