首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
To develop a single stage water–gas shift reaction (WGS) catalyst for compact reformers, Pt/CeO2, Pt/ZrO2, and Pt/Ce(1−x)Zr(x)O2 catalysts have been applied for the target reaction. The CeO2/ZrO2 ratio was systematically varied to optimize Pt/Ce(1−x)Zr(x)O2 catalysts. Pt/CeO2 showed the highest turnover frequency (TOF) and the lowest activation energy (Ea) among the catalysts tested in this study. It has been found that the reduction property of the catalyst is more important than the dispersion for a single stage WGS. Pt/CeO2 catalyst also showed stable catalytic performance. Thus, Pt/CeO2 can be a promising catalyst for a single stage WGS for compact reformers.  相似文献   

2.
The water–gas shift (WGS) activity of Pt/SiO2, Pt/CeO2 and Pt/TiO2 catalysts was studied by in-situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS). Samples contained a similar amount of Pt, between 0.34 and 0.50%, and were characterized by employing a variety of physical and spectroscopic techniques. The catalyst activities were evaluated through both CO conversion versus temperature and CO conversion versus time tests. The DRIFTS spectra were obtained on stream during the WGS reaction at increasing temperatures, from 303 to 573 K. Reduced ceria was the only active support and promoted the WGS reaction on surface bridging OH groups that react with CO to form formate intermediates. Pt/SiO2 was more active than CeO2 and catalyzed the WGS reaction through a monofunctional redox mechanism on metallic Pt sites. The CO conversion turnover rate was more than one order of magnitude greater on Pt/CeO2 than on Pt/SiO2 showing that the reaction proceeds faster via a bifunctional metal-support mechanism. Platinum on Pt/CeO2 increased the concentration of OH groups by increasing the ceria reduction extent and also provided a faster pathway for the formation of formate intermediates in comparison to CeO2 support. Pt/TiO2 catalysts were clearly more active than Pt/CeO2. The WGS reaction on Pt/TiO2 was catalyzed via a bifunctional metal-support mechanism, probably involving the activation of CO and water on the metal and the support, respectively. The role of platinum on Pt/TiO2 was critical for promoting the reduction of Ti4+ ions to Ti3+ which creates oxygen vacancies in the support to efficiently activate water.  相似文献   

3.
The water–gas shift (WGS) reaction was examined over Pt and Pt–CeOx catalysts supported on CexZr1−xO2 (Ce0.05Zr0.95O2, Ce0.2Zr0.8O2, Ce0.4Zr0.6O2, Ce0.6Zr0.4O2, Ce0.7Zr0.3O2 and Ce0.8Zr0.2O2) under severe reaction conditions, viz. 6.7 mol% CO, 6.7 mol% CO2, and 33.2 mol% H2O in H2. The catalysts were characterized with several techniques, including X-ray diffraction (XRD), CO chemisorption, temperature-programmed reduction (TPR) with H2, temperature-programmed oxidation (TPO), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and bright-field transmission electron microscopy (TEM). Among the supported Pt catalysts tested, Pt/Ce0.4Zr0.6O2 showed the highest WGS activity in all temperature ranges. An improvement in the WGS activity was observed when CeOx was added with Pt on CexZr1−xO2 supports (x = 0.05 and 0.2) due to intimate contact between Pt and CeOx species. Based on CO chemisorptions and TPR profiles, it has been found that the interaction between Pt species and surface ceria-zirconia species is beneficial to the WGS reaction. A gradual decrease in the catalytic activity with time-on-stream was found over Pt and Pt–CeOx catalysts supported on CexZr1−xO2, which can be explained by a decrease in the Pt dispersion. The participation of surface carbonate species on deactivation appeared to be minor because no improvement in the catalytic activity was found after the regeneration step where the aged catalyst was calcined in 10 mol% O2 in He at 773 K and subsequently reduced in H2 at 673 K.  相似文献   

4.
In this study, highly active and stable CeO2, ZrO2, and Zr(1-x)Ce(x)O2-supported Co catalysts were prepared using the co-precipitation method for the high-temperature water gas shift reaction to produce hydrogen from waste-derived synthesis gas. The physicochemical properties of the catalysts were investigated by carrying out Brunauer-Emmet-Teller, X-ray diffraction, CO-chemisorption, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and H2-temperature-programmed reduction measurements. With an increase in the ZrO2 content, the surface area and reducibility of the catalysts increased, while the interaction between Co and the support and the dispersion of Co deteriorated. The Co–Zr0.4Ce0·6O2 and Co–Zr0.6Ce0·4O2 catalysts showed higher oxygen storage capacity than that of the others because of the distortion of the CeO2 structure due to the substitution of Ce4+ by Zr4+. The Co–Zr0.6Ce0·4O2 catalyst with high reducibility and oxygen storage capacity exhibited the best catalytic performance and stability among all the catalysts investigated in this study.  相似文献   

5.
A series of Au catalysts supported on CeO2–TiO2 with various CeO2 contents were prepared. CeO2–TiO2 was prepared by incipient-wetness impregnation with aqueous solution of Ce(NO3)3 on TiO2. Gold catalysts were prepared by deposition–precipitation method at pH 7 and 65 °C. The catalysts were characterized by XRD, TEM and XPS. The preferential oxidation of CO in hydrogen stream was carried out in a fixed bed reactor. The catalyst mainly had metallic gold species and small amount of oxidic Au species. The average gold particle size was 2.5 nm. Adding suitable amount of CeO2 on Au/TiO2 catalyst could enhance CO oxidation and suppress H2 oxidation at high reaction temperature (>50 °C). Additives such as La2O3, Co3O4 and CuO were added to Au/CeO2–TiO2 catalyst and tested for the preferential oxidation of CO in hydrogen stream. The addition of CuO on Au/CeO2–TiO2 catalyst increased the CO conversion and CO selectivity effectively. Au/CuO–CeO2–TiO2 with molar ratio of Cu:Ce:Ti = 0.5:1:9 demonstrated very high CO conversion when the temperature was higher than 65 °C and the CO selectivity also improved substantially. Thus the additive CuO along with the promoter and amorphous oxide ceria and titania not only enhances the electronic interaction, but also stabilizes the nanosize gold particles and thereby enhancing the catalytic activity for PROX reaction to a greater extent.  相似文献   

6.
Present study evaluated the catalytic steam gasification of furniture waste to enhance the biohydrogen production. To do this, 10 wt% nickel loaded catalysts on the variety of supports (Al2O3, CeO2, CeO2-La2O3, and CeO2–ZrO2) were prepared by the novel solvent deficient method. The hydrogen selectivity (vol%) order of the catalysts was achieved as Ni/CeO2–ZrO2>Ni/CeO2>Ni/Al2O3?Ni/CeO2-La2O3. The best catalytic activity of Ni/CeO2–ZrO2 catalyst (~82 vol % H2 at 800 °C) was ascribed to the smaller size of nickel crystals, finely dispersed Ni on the catalyst surface, and Ce1-xZrxO2-δ solid solution. The role of Ce1-xZrxO2-δ solid solution in Ni/CeO2–ZrO2 catalyst was observed as bi-functional; acceleration of water-gas-shift and oxidation of carbon reaction. The high resistance of Ni/CeO2–ZrO2 towards the coke formation showed its potential to establish a cost-effective commercial-scale biomass steam gasification process. This study is expected to provide a promising solution for the disposal of furniture wastes for production of clean energy (biohydrogen).  相似文献   

7.
Wash-coated Pt/CeO2, Pt/CeO2/ZrO2 and Pt/Cu/CeO2 and Pt/CeO2/Al2O3 based formulations were tested in sandwich type microreactors for water–gas shift (WGS) activity. At low reaction temperature of 260 °C, low conversion of carbon monoxide was initially observed which increased considerably upon the addition of air, a behaviour which was observed even after multiple cycles of start-up, operation with and without air and shut-down. At a higher reaction temperature of 400 °C air addition did not further improve the performance of the catalysts, which converted the carbon monoxide already close to equilibrium. One of the catalysts was incorporated into a larger reactor of kW scale and tested for its performance under conditions of WGS and oxygen enhanced WGS. The carbon monoxide conversion was increased by the air addition also on the larger reactor.  相似文献   

8.
H. Kaneko 《Solar Energy》2011,85(9):2321-2330
The O2-releasing reaction under the air with the reactive ceramics of CeO2-ZrO2 oxides which can be applied to solar hydrogen production via a two-step water splitting cycle using concentrated solar thermal energy was investigated. CeO2-ZrO2 oxides were synthesized by polymerized complex method at different Ce:Zr molar ratio. The solid solubility of ZrO2 in fluorite structure of CeO2 was in good agreement with the initial content of Zr ions at the preparation in CeO2-ZrO2 oxide. The O2-releasing reaction in air with CeO2-ZrO2 oxides was studied. Different solid solubility (0%, 10%, 20%, 30%) of ZrO2 in CeO2 were examined. The amount of O2 gas evolved in the reaction with Ce1−xZrxO2 (0 ? x ? 0.3) solid solutions was more than that with CeO2, and the largest yield of 2.9 cm3/g was exhibited at x = 0.2 (Ce0.8Zr0.2O2) for an O2 release at 1500 °C in air. The reduced cerium ion in Ce0.8Zr0.2O2 was about 11%, which is seven times higher than that with CeO2. The optical absorption and luminescence spectra of the CeO2-ZrO2 oxide obtained before and after the O2-releasing reaction suggest that the reduction of Ce4+ with formation of oxygen defect in the air. The enhancement of the O2-releasing reaction with CeO2-ZrO2 oxide is found to be caused by an introduction of Zr4+, which has smaller ionic radius than Ce3+ or Ce4+, in the fluorite structure.  相似文献   

9.
The influence of the support of Pt catalysts for the reaction of steam reforming of ethanol at low temperatures has been investigated on Al2O3, ZrO2 and CeO2. It was found that the conversion of ethanol is significantly higher when Pt is dispersed on Al2O3 or ZrO2, compared to CeO2. Selectivity toward H2 is higher over ZrO2-supported catalyst, which is also able to decrease CO production via the water-gas shift reaction. Depending on catalyst employed, interaction of the reaction mixture with the catalyst surface results in the development of a variety of bands attributed to ethoxy, acetate and formate/carbonate species associated with the support, as well as by bands attributed to carbonyl species adsorbed on platinum sites. The oxidation state of Pt seems to affect catalytic activity, which was found to decrease with increasing the population of adsorbed CO species on partially oxidized (Ptδ+) sites. Evidence is provided that the main reaction pathway ethanol dehydrogenation, through the formation of surface ethoxy species and subsequently acetaldehyde, which is decomposed toward methane, hydrogen and carbon oxides. The population of adsorbed surface species, as well as product distribution in the gas phase varies significantly depending on catalyst reactivity towards the WGS reaction.  相似文献   

10.
Oxygen reduction and evolution have been studied with respect to the development of bifunctional air/oxygen electrode (BFE). Three groups of catalysts have been prepared: (i) CuxCo3−xO4 by thermal decomposition of mixed nitrate and carbonate precursors; (ii) thin films of Co–Ni–Te–O and Co–Te–O were deposited by vacuum co-evaporation of Co, Ni and TeO2 and (iii) CoxOv/ZrO2 films were obtained by electrochemical deposition.  相似文献   

11.
Effect of photodeposition of AuNPs (gold nanoparticles) on TiO2, CeO2, Cu2O and Fe3O4 supports has been illustrated on sacrificial donor based hydrogen evolution. The synthesized samples were characterized by diffuse reflectance spectroscopy (DRS), and transmission electron microscopy (TEM). Highest photocatalytic activity was exhibited by Au/TiO2 followed by Au/Fe3O4, Au/CeO2 and Au/Cu2O. Au/TiO2 under optimized conditions has shown significantly high photocatalytic activity under both UV–visible and visible radiation. Au/TiO2 shows hydrogen evolution rate of 920 μmol h−1 and 32.4 μmol h−1 under UV–visible and visible radiation, respectively. Significant enhancement in hydrogen evolution rate under visible light is very encouraging and may be attributed to polydispersed nature of AuNPs wherein larger particles facilitate light absorption and the smaller function as catalytic sites. Further studies are in progress to study the influence of various parameters on photocatalytic activity of Au/TiO2.  相似文献   

12.
Oxidative steam reforming of methanol over monometallic gold (Au) and bimetallic Au-copper (Cu) supported on ceria-zirconia (CeO2ZrO2) was examined over the temperature range of 200–400 °C in a fixed-bed reactor. The composition of CeO2ZrO2 supports was also studied for their catalytic activity. The Au/Ce0.75Zr0.25O2 catalyst exhibited the highest methanol (CH3OH) conversion level (96.7%) and hydrogen (H2) yield (59.7%) due to the formation of a homogeneous Ce1-xZrxO2 solid solution. When Cu was introduced in the Au catalysts, all of the bimetallic catalysts presented a better stability for CH3OH conversion as well as H2 yield in comparison to the monometallic catalysts, which was due to the partial electron transfer from Cu to Au metals. The performance of the AuCu/Ce0.75Zr0.25O2 catalysts, which was evaluated under identical conditions, was ranked in the order: 3Au1Cu > 1Au3Cu > 1Au1Cu.  相似文献   

13.
In this work, we report for the first time a plasmonic photoanode by decorating Au nanoparticles (NPs) onto two-dimensional (2D) Co3O4 nanosheets (NSs)/one-dimensional (1D) TiO2 nanorod arrays (NRAs) (Au/Co3O4/TiO2-NRAs) for enhanced visible-light photoelectrochemical (PEC) water splitting. In this plasmonic photoanode, TiO2 NRAs act as an electron acceptor, plasmonic Au NPs and hierarchical Co3O4 NSs serve as visible-light harvesters. Light absorption shows that Au/Co3O4/TiO2-NRAs heterojunction architectures exhibit greatly improved ability to harvest visible light due to the surface plasmon resonance (SPR) absorption of Au NPs and visible light harvesting ability of Co3O4 NSs. Spectroscopic measurements demonstrate that a type II band alignment is formed between Co3O4 and TiO2. Benefiting from the SPR effect, type II band alignment and novel hierarchical architecture, plasmonic Au/Co3O4/TiO2-NRAs photoanode shows remarkably enhanced visible-light PEC water splitting activity compared with Co3O4/TiO2-NRAs and pristine TiO2-NRAs photoanodes. Photocurrent density achieved by plasmonic photoanode is 37 and 1.2 times higher than those of TiO2-NRAs and Co3O4/TiO2-NRAs photoanodes, respectively. This work provides a promising strategy to highly enhance visible-light PEC water splitting activity of wide band-gap semiconductor-based photoelectrode materials.  相似文献   

14.
《能源学会志》2020,93(2):774-783
Soot oxidation under a low concentration O2 (0.5% O2/N2) was investigated using CeO2–ZrO2-MnOx mixed oxides with varied amounts of MnOx, in order to gain low temperature catalytic activity and find out the main factors affecting the soot oxidation. The catalytic activity was remarkably improved over these catalysts compared to that of non-catalyst in such a low concentration of O2. In particular, CeO2–ZrO2-MnOx with 10% MnOx doping (M10-CZ) showed the highest catalytic activity with its T50 values of 340 °C under tight contact condition. The results of N2 adsorption-desorption and X-ray diffraction (XRD) indicated that the textural and structural properties were not positive correlation with soot oxidation, are not the main factors affecting the catalytic activity of CeO2–ZrO2 and CeO2–ZrO2-MnOx catalysts. The results of oxygen storage capacity (OSC), hydrogen-temperature programmed reduction (H2-TPR), O2 temperature program desorption (O2-TPD), UV Raman spectroscopy (UV Raman) and X-ray photoelectron spectroscopy (XPS) testified that redox ability, oxygen storage capacity, oxygen desorption capacity at low temperature and surface active oxygen species are more important for soot oxidation. The enhancements of the catalytic behavior after MnOx addition can be due to the improving of the adsorbed, activation and mobility of reactive oxygen species. In this work, these factors about generation and movement of reactive oxygen species are crucial for soot oxidation in a low oxygen concentration condition.  相似文献   

15.
Catalytic steam reforming of methane in an electric field (electroreforming) at low temperatures such as 423 K was investigated. Pt catalysts supported on CeO2, CexZr1−xO2 solid solution and a physical mixture of CeO2 and other insulators (ZrO2, Al2O3 or SiO2) were used for electroreforming. Among these catalysts, Pt catalyst supported on CexZr1−xO2 solid solution showed the highest activity for electroreforming (CH4 conv. = 40.6% at 535.1 K). Results show that the interaction among the electrons, metal loading, and catalyst support was important for high catalytic activity on the electroreforming. Catalytic activity of the electroreforming increased in direct relation to the input current. Characterizations using X-ray diffraction (XRD), temperature programmed reduction with H2 (H2-TPR), and alternate current (AC) impedance measurement show that the catalyst structure is an important factor for activity of electroreforming.  相似文献   

16.
Bulk conduction and relaxation of the [(ZrO2)1−x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) solid solutions were studied using impedance spectroscopy at intermediate temperatures (200-500 °C). The bulk conductivity as a function of x shows a “V-shape” variation which is a competitive effect of the defect associates and the lattice parameter. In the ZrO2-rich region (x < 0.5) CeO2 doping increases the concentration of defect associates which limits the mobility of the oxygen vacancies; in the CeO2-rich region (x > 0.5) the increase of x increases the lattice parameter which enlarges the free channel for oxygen vacancy migration. Further analysis indicates the ionic radius of the tetravalent dopant determines the composition dependence of the ionic conductivity of the solid solutions. When doping YSZ with other tetravalent dopant with similar ionic radius with Zr4+, e.g., Hf4+, such “V-shape” composition dependence of the bulk conductivity cannot be observed.  相似文献   

17.
Influence of coexisting Al2O3 on the catalytic activity for low-temperature water–gas-shift (LT-WGS) reaction over Cu catalyst was investigated. The catalytic activity of Cu/Al2O3 catalyst increased with decreasing mesopore size when S/C ratio was 2.2, whereas the catalytic activity with S/C ratio = 4.6 increased with increasing mesopore size. IR measurement combined with kinetic study suggested that the low catalytic activity of Cu/CeO2 catalyst comes from the restriction of CO adsorption on Cu0 by bidentate-type carbonate formed on the strong basic site of CeO2 support. On the other hand, it was found that bidentate-type carbonate was not formed on Cu/Al2O3 showing high catalytic activity for LT-WGS reaction.  相似文献   

18.
The addition of MOx (M: di- or tri-valent transition metal ion) into cerium dioxide (CeO2) enhanced the ability of CeO2 for the oxygen (O2)-releasing reaction at lower temperature and swift hydrogen (H2)-generation reaction. CeO2–MOx (M=Mn, Fe, Ni, Cu) reactive ceramics having high melting points were synthesized with the combustion method from their nitrates for solar H2 production. The prepared CeO2–MOx samples were solid solutions between CeO2 and MOx with the fluorite structure through the X-ray diffractometry measurement. Two-step water-splitting reactions with CeO2–MOx reactive ceramics proceeded at 1573–1773 K for the O2-releasing step and at 1273 K for the H2-generation step by irradiation of infrared image furnace as a solar simulator. The amounts of O2 evolved in the O2-releasing reaction with CeO2–MOx increased with an increase in the reaction temperature. The amounts of H2 evolved in the H2-generation reaction with CeO2–MOx systems except for M=Cu were more than that of CeO2 system after the O2-releasing reaction at the temperatures of 1673 and 1773 K. The amounts of H2 evolved in the H2-generation reaction with CeO2–MnO and CeO2–NiO systems were more than those of CeO2–Fe2O3, CeO2–CuO and CeO2 systems after the O2-releasing reaction at the temperature of 1573 K. The amounts of evolved H2 after the O2-releasing reaction at the temperature of 1773 K in cm3 per gram of CeO2–MOx were 0.975–3.77 cm3/g. The O2-releasing reaction at 1673 K and H2-generation reaction at 1273 K with CeO2–Fe2O3 proceeded with repetition of 4 times stoichiometrically.  相似文献   

19.
A catalyst composed of platinum-group metals supported on an oxide exhibits high activity in a low-temperature water-gas shift (LT-WGS) reaction; however, the reaction rate is greatly reduced when H2 or CO2, the product gases of the WGS reaction, are included in the reactant stream. In this study, we attempted to understand the origin of this activity inhibition by analyzing the kinetic data with in-situ CO-diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The WGS reaction rate decreases more severely by H2 than CO2. The CO-DRIFTS spectra indicate that this can be explained by H2 preoccupying the active sites for the WGS reaction. In addition, by comparing the kinetic data with the literature, it could be inferred that a similar inhibition mechanism is operating in other oxide-supported Pt catalysts. Considering this inhibition mechanism will be important for the development of catalysts with high WGS activity in reformate gas.  相似文献   

20.
Stable BaCe0.5Zr0.3Y0.16Zn0.04O3−δ (BCZYZ) thin membrane was successfully prepared by in situ tape casting/co-firing method for proton-conducting solid oxide fuel cells. The starting powders were BaCO3, CeO2, ZrO2, Y2O3, ZnO for electrolyte and BaCO3, CeO2, ZrO2, Y2O3, ZnO, NiO, graphite for anode. The anode/electrolyte bi-layers were prepared by a simple multi-layer tape casting/co-firing method. The phase characterizations and microstructures were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The anode–electrolyte bi-layers were sintered at 1450 °C. The electrolytes were extremely dense with pure perovskite phase and the thickness was about 25 μm. The anodes were porous and no obvious reaction was found between NiO and BCZYZ. With LaSr3Co1.5Fe1.5O10−δ (LSCF)/BCZYZ as cathode, the open current voltage and maximum power density respectively, reached 1.00 V and 247 mW cm−2 at 650 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号