首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the energy, exergy, economic, environmental, steady-state, and process performance modeling/analysis of hybrid renewable energy (RE) based multigeneration system is presented. Beyond the design/performance analysis of an innovative hybrid RE system, this study is novel as it proposes a new methodology for determining the overall process energy and exergy efficiency of multigeneration systems. This novel method integrates EnergPLAN simulation program with EES and Matlab. It considers both the steady-state and the process performance of the modeled system on hourly timesteps in order to determine the overall efficiencies. Based on the proposed new method, it is observed that the overall process thermodynamic efficiencies of a hybrid renewable energy-based multigeneration system are different from its steady-state efficiencies. The overall energy and exergy efficiencies reduce from 81.01% and 52.52% (in steady-state condition) to 58.6% and 39.33% (when considering a one-year process performance). The integration of the hot water production with the multigeneration system enhanced the overall thermodynamic efficiencies in steady-state conditions. The Kalina system produces a total work output of 1171 kW with a thermal and exergy efficiency of 12.23% and 52% respectively while the wind turbine system produces 1297 kW of electricity in steady-state condition and it has the same thermal/exergy efficiency (72%). The economic analysis showed that the Levelized cost of electricity (LCOE) of the geothermal energy-based Kalina system is 0.0103 $/kWh. The greenhouse gas emission reduction analysis showed that the proposed system will save between 1,411,480 kg/yr and 3,518,760 kg/yr of greenhouse gases from being emitted into the atmosphere yearly. The multigeneration system designed in this study will produce electricity, hydrogen, hot water, cooling effect, and freshwater. Also, battery electric vehicle charging is integrated with process performance analysis of the multigeneration system.  相似文献   

2.
A renewable energy based integrated system is developed to meet the total energy demands of a house located off-grid, and a thermodynamic analysis through energy and exergy methodologies is conducted for analysis, evaluation, and performance assessment. The present novel multigeneration system is mainly driven through the animal residues produced at the farm house. The proposed novel system is composed of nine main units namely, a biomass combustor, photovoltaic (PV) panels, parabolic solar trough collectors, thermoelectric generators, organic Rankine cycle, electrolyzer, homogeneous charged compression ignition (HCCI) engine, absorption chiller, and reverse osmosis (RO) unit. Biomass combustor runs an organic Rankine turbine for additional power during peak loads. The exhaust of gas turbine generates cooling to meet the cooling demand of the residential area of the farm house. PV panels are incorporated to generate hydrogen through electrolyzer. A HCCI engine generates power to compensate peak load as well as charging the farming vehicles of the farm house. The RO unit with energy recovery Pelton turbine produces fresh water for farming and residential use. The advanced integration of subsystems, thermoelectric generators and efficient utilization of waste, improves significant amount of energetic and exergetic efficiencies of overall multigenerational system. The energy and exergy efficiencies are enhanced in the order of 4.8% and 6.3%, respectively, after incorporating innovative cooling system to the PV modules. The overall energy and exergy efficiencies of the proposed multigeneration system with and without thermoelectric are found to be 67.6% and 57.1%, and 68.9% and 58.4%, respectively.  相似文献   

3.
In this study, a solar thermal based integrated system with a supercritical-CO2 (sCO2) gas turbine (GT) cycle, a four-step Mg–Cl cycle and a five-stage hydrogen compression plant is developed, proposed for applications and analyzed thermodynamically. The solar data for the considered solar plant are taken for Greater Toronto Area (GTA) by considering both daily and yearly data. A molten salt storage is considered for the system in order to work without interruption when the sun is out. The power and heat from the solar and sCO2-GT subsystems are introduced to the Mg–Cl cycle to produce hydrogen at four consecutive steps. After the internal heat recovery is accomplished, the heating process at required temperature level is supplied by the heat exchanger of the solar plant. The hydrogen produced from the Mg–Cl cycle is compressed up to 700 bar by using a five-stage compression with intercooling and required compression power is compensated by the sCO2-GT cycle. The total energy and exergy inputs to the integrated system are found to be 1535 MW and 1454 MW, respectively, for a 1 kmol/s hydrogen producing plant. Both energy and exergy efficiencies of the overall system are calculated as 16.31% and 17.6%, respectively. When the energy and exergy loads of the receiver are taken into account as the main inputs, energy and exergy efficiencies become 25.1%, and 39.8%, respectively. The total exergy destruction within the system is found to be 1265 MW where the solar field contains almost 64% of the total irreversibility with a value of ~811 MW.  相似文献   

4.
A techno-economic assessment is conducted for a multigeneration system comprised of two renewable energy subsystems—geothermal and solar—to supply electrical power, cooling, heating, hydrogen and hot water for buildings. The proposed system is evaluated in terms of energy and exergy efficiencies. The simulation results show that the electrolyzer produces 2.7 kg/h hydrogen. A parametric study is carried out to assess the effect of various parameters on the system energy and exergy efficiencies. The economic assessment, performed using the Hybrid Optimization of Multiple Energy Resources (HOMER) software, shows that the net present cost of the optimized electrical power system is $476,000 and the levelized cost of electricity is $0.089/kWh.  相似文献   

5.
A hybrid renewable-based integrated energy system for power-to-X conversion is designed and analyzed. The system produces several valuable commodities: Hydrogen, electricity, heat, ammonia, urea, and synthetic natural gas (SNG). Hydrogen is produced and stored for power generation from solar energy by utilizing solid oxide electrolyzers and fuel cells. Ammonia, urea, and synthetic natural gas are produced to mitigate hydrogen transportation and storage complexities and act as energy carriers or valuable chemical products. The system is analyzed from a thermodynamic perspective, the exergy destruction rates are compared, and the effects of different parameters are evaluated. The overall system's energy efficiency is 56%, while the exergy efficiency is 14%. The highest exergy destruction occurs in the Rankine cycle with 48 MW. The mass flow rates of the produced chemicals are 0.064, 0.088, and 0.048 kg/s for ammonia, urea, and SNG, respectively.  相似文献   

6.
In the examined paper, a solar and wind energy supported integrated cycle is designed to produce clean power and hydrogen with the basis of a sustainable and environmentally benign. The modeled study mainly comprises of four subsystems; a solar collector cycle which operates with Therminol VP1 working fluid, an organic Rankine cycle which runs with R744 fluid, a wind turbine as well as hydrogen generation and compression unit. The main target of this work is to investigate a thermodynamic evaluation of the integrated system based on the 1st and 2 nd laws of thermodynamics. Energetic and exergetic efficiencies, hydrogen and electricity generation rates, and irreversibility for the planned cycle and subsystems are investigated according to different parameters, for example, solar radiation flux, reference temperature, and wind speed. The obtained results demonstration that the whole energy and exergy performances of the modeled plant are 0.21 and 0.16. Additionally, the hydrogen generation rate is found as 0.001457 kg/s, and the highest irreversibility rate is shown in the heat exchanger subcomponents. Also, the net power production rate found to be 195.9 kW and 326.5 kW, respectively, with organic Rankine cycle and wind turbine. The final consequences obtained from this work show that the examined plant is an environmentally friendly option, which in terms of the system's performance and viable, for electrical power and hydrogen production using renewable energy sources.  相似文献   

7.
In this study, comprehensive thermodynamic analysis and techno-economic assessment studies of the renewable hydrogen production and its blending with natural gas in the existing pipelines are performed. Solar and wind energy-based on-grid and off-grid power systems are designed and compared in energy, exergy, and cost. Solar PV panels and wind turbines are particularly considered for electricity and hydrogen production for residential applications in an environmentally benign way. Fuel cell units are included to supply continuous electricity in the off-grid system. Here, the heat required for a community consisting of 100 houses is provided by hydrogen and natural gas mixture as a more environmentally benign fuel. The costs of capital, fuel, operation, and maintenance are calculated and evaluated in detail. The total net present costs are calculated as $6.95 million and $2.47 million for the off-grid and on-grid power systems, respectively. For the off-grid system, energy and exergy efficiencies are calculated as 32.64% and 40.73%, respectively. Finally, the energy and exergy efficiencies of the on-grid system are determined as 26.58% and 35.25%, respectively.  相似文献   

8.
This paper performs a thermo-economic assessment of a multi-generation system based on solar and wind renewable energy sources. This system works to generate power, freshwater, and hydrogen, which consists of the following parts: the solar collectors, Steam Rankine subsystem, Organic Rankine subsystem, desalination part, and hydrogen production and compression unit. Initially, the effects of variables including reference temperature, solar radiation intensity, wind speed, and solar cycle mass flow rate, which depend on weather conditions and affect the performance of the integrated system, were investigated. The thermodynamic analysis results showed that the overall study's exergy efficiency, the rate of hydrogen and freshwater production, and total cost rate are 33.3%, 7.92 kg/h, 1.6398 kg/s, and 61.28 $/h, respectively. Also, the net power generation rate in the Steam and Organic Rankine subsystems and wind turbines are 315 kW, 326.52 kW, and 226 kW, respectively. The main goal of this study is to minimize the total cost rate of the system and maximize the exergy efficiency and hydrogen and freshwater production rate of the total system. The results of optimization showed that the exergy efficiency value improved by 20.7%, the hydrogen production rate increased by 1%, and the total cost rate value declined by 2%. Moreover, the optimum point is similar to a region in Hormozgan province, Iran. So, this region is proposed for building the power plant.  相似文献   

9.
Analysis and performance assessment of a solar driven hydrogen production plant running on an Mg–Cl cycle, are conducted through energy and exergy methods. The proposed system consists of (a) a concentrating solar power cycle with thermal energy storage, (b) a steam power plant with reheating and regeneration, and (c) a hybrid thermochemical Mg–Cl hydrogen production cycle. The results show that higher steam to magnesium molar ratios are required for full yield of reactants at the hydrolysis step. This ratio even increases at low temperatures, although lowering the highest temperatures appears to be more favorable for linking such a cycle to lower temperature energy sources. Reducing the maximum cycle temperature decreases the plant energy and exergy efficiencies and may cause some undesirable reactions and effects. The overall system energy and exergy efficiencies are found to be 18.8% and 19.9%, respectively, by considering a solar heat input. These efficiencies are improved to 26.9% and 40.7% when the heat absorbed by the molten salt is considered and used as a main energy input to the system. The highest exergy destruction rate occurs in the solar field which accounts for 79% of total exergy destruction of the integrated system.  相似文献   

10.
The present study develops a new solar and geothermal based integrated system, comprising absorption cooling system, organic Rankine cycle (ORC), a solar-driven system and hydrogen production units. The system is designed to generate six outputs namely, power, cooling, heating, drying air, hydrogen and domestic hot water. Geothermal power plants emit high amount of hydrogen sulfide (H2S). The presence of H2S in the air, water, soils and vegetation is one of the main environmental concerns for geothermal fields. In this paper, AMIS(AMIS® - acronym for “Abatement of Mercury and Hydrogen Sulphide” in Italian language) technology is used for abatement of mercury and producing of hydrogen from H2S. The present system is assessed both energetically and exergetically. In addition, the energetic and exergetic efficiencies and exergy destruction rates for the whole system and its parts are defined. The highest overall energy and exergy efficiencies are calculated to be 78.37% and 58.40% in the storing period, respectively. Furthermore, the effects of changing various system parameters on the energy and exergy efficiencies of the overall system and its subsystems are examined accordingly.  相似文献   

11.
In the current study, a solar energy power plant integrated with a biomass-based hydrogen production system is investigated. The proposed plant is designed to supply the required energy for the hydrogen production process along with the electrical energy generation. Thermochemical processes are used to obtain high-purity hydrogen from biomass-based syngas. For this purpose, the simulation of the plant is performed using Aspen HYSYS software. Thermodynamic performance evaluation of the hybrid system is conducted with exergy analysis. Based on the obtained results, the exergy efficiencies of the hydrogen production process and power generation systems are 55.8% and 39.6%, respectively. The net power output of the system is obtained to be 38.89 MWe. Furthermore, the amount of produced hydrogen in the integrated system is 7912.5 tons/year with a flow rate of 10.8 tons/h synthesis gas for 7500 h/year operation. Results show that designing and operating a hybrid high-performance energy system using two different renewable sources is an encouraging approach to reduce the environmental impact of energy conversion processes and the effective use of energy resources.  相似文献   

12.
Increasing environmental concerns and decreasing fossil fuel sources compel engineers and scientists to find resilient, clean, and inexpensive alternative energy options Recently, the usage of renewable power resources has risen, while the efficiency improvement studies have continued. To improve the efficiency of the plants, it is of great significance to recover and use the waste heat to generate other useful products. In this paper, a novel integrated energy plant utilizing a geothermal resource to produce hydrogen, ammonia, power, fresh water, hot water, heated air for drying, heating, and cooling is designed. Hydrogen, as an energy carrier, has become an attractive choice for energy systems in recent years due to its features like high energy content, clean, bountiful supply, non-toxic and high efficiency. Furthermore in this study, hydrogen beside electricity is selected to produce and stored in a hydrogen storage tank, and some amount of hydrogen is mixed with nitrogen to compound ammonia. In order to determine the irreversibilities occurring within the system and plant performance, energy and exergy analyses are then performed accordingly. In the design of the plant, each sub-system is integrated in a sensible manner, and the streams connecting sub-systems are enumerated. Then thermodynamic balance equations, in terms of mass, energy, entropy and exergy, are introduced for each unit of the plant. Based on the system inputs and outputs, the energy and exergy efficiencies of the entire integrated plant is found to be 58.68% and 54.73% with the base parameters. The second part of the analysis contains some parametric studies to reveal how some system parameters, which are the reference temperature, geothermal resource temperature and mass flow rate, and separator inlet pressure in the geothermal cycle, affect both energy and exergy efficiencies and hence the useful outputs.  相似文献   

13.
The present study develops a new solar energy system integrated with a Mg–Cl thermochemical cycle for hydrogen production and analyzes it both energetically and exergetically for efficiency assessment. The solar based integrated Mg–Cl cycle system considered here consists of five subsystems, such as: (i) heliostat field subsystem, (ii) central receiver subsystem, (iii) steam generation subsystem, (iv) conventional power cycle subsystem and (v) Mg–Cl subsystem. Also, the inlet and outlet energy and exergy rates of all of subsystems are calculated and illustrated accordingly. We also undertake a parametric study to investigate how the overall system performance is affected by the reference environment temperature and operating conditions. As a result, the overall energy and exergy efficiencies of the considered system are found to be 18.18% and 19.15%, respectively. The results show that the Mg–Cl cycle has good potential and attractive overall cycle efficiencies over 50%.  相似文献   

14.
A solar-wind hybrid trigeneration system is proposed and analyzed thermodynamically through energy and exergy approaches in this paper. Hydrogen, electricity and heat are the useful products generated by the hybrid system. The system consists of a solar heliostat field, a wind turbine and a thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production linked with a hydrogen compression system. A solar heliostat field is employed as a source of thermal energy while the wind turbine is used to generate electricity. Electric power harvested by the wind turbine is supplied to the electrolyzer and compressors and provides an additional excess of electricity. Hydrogen produced by the thermochemical copper-chlorine (Cu-Cl) cycle is compressed in a hydrogen compression system for storage purposes. Both Aspen Plus 9.0 and EES are employed as software tools for the system modeling and simulation. The system is designed to achieve high hydrogen production rate of 455.1 kg/h. The overall energy and exergy efficiencies of the hybrid system are 49% and 48.2%, respectively. Some additional results about the system performance are obtained, presented and discussed in the paper.  相似文献   

15.
In this paper, a new renewable energy-based cogeneration system for hydrogen and electricity production is developed. Three different methods for hydrogen production are integrated with Rankine cycle for electricity production using solar energy as an energy source. In addition, a simple Rankine cycle is utilized for producing electricity. This integrated system consists of solar steam reforming cycle using molten salt as a heat carrier, solar steam reforming cycle using a volumetric receiver reactor, and electrolysis of water combined with the Rankine cycle. These cycles are simulated numerically using the Engineering Equation Solver (EES) based on the thermodynamic analyses. The overall energetic and exergetic efficiencies of the proposed system are determined, and the exergy destruction and entropy generation rates of all subcomponents are evaluated. A comprehensive parametric study for evaluating various critical parameters on the overall performance of the system is performed. The study results show that both energetic and exergetic efficiencies of the system reach 28.9% and 31.1%, respectively. The highest exergy destruction rates are found for the steam reforming furnace and the volumetric receiver reforming reactor (each with about 20%). Furthermore, the highest entropy generation rates are obtained for the steam reforming furnace and the volumetric receiver reforming reactor, with values of 174.1 kW/K and 169.3 kW/K, respectively. Additional parametric studies are undertaken to investigate how operating conditions affect the overall system performance. The results report that 60.25% and 56.14% appear to be the highest exergy and energy efficiencies at the best operating conditions.  相似文献   

16.
Renewable energy based multi-generation systems can help solving energy-related environmental problems. For this purpose, a novel solar tower-based multi-generation system is proposed for the green hydrogen production as the main product. A solar-driven open Brayton cycle with intercooling, regeneration and reheat is coupled with a regenerative Rankine cycle and a Kalina cycle-11 as a unique series of power cycles. Significant portion of the produced electricity is utilized to produce green hydrogen in an electrolyzer. A thermal energy storage, a single-effect absorption refrigeration cycle and two domestic hot water heaters are also integrated. Energy, exergy and economic analyses are performed to examine the performance of the proposed system, and a detailed parametric analysis is conducted. Multiobjective optimization is carried out to determine the optimum performance. Optimum energy and exergy efficiencies, unit exergy product cost and total cost rate are calculated as 39.81%, 34.44%, 0.0798 $/kWh and 182.16 $/h, respectively. Products are 22.48 kg/h hydrogen, 1478 kW power, 225.5 kW cooling and 7.63 kg/s domestic hot water. Electrolyzer power size is found as one of the most critical decision variables. Solar subsystem has the largest exergy destruction. Regenerative Rankine cycle operates at the highest energy and exergy efficiencies among power cycles.  相似文献   

17.
In order to meet the energy and fuel needs of societies in a sustainable way and hence preserve the environment, there is a strong need for clean, efficient and low-emission energy systems. In this regard, it is aimed to generate cleaner energy outputs, such as electricity, hydrogen and ammonia as well as some additional useful commodities by utilizing both methane gas and the waste heat of an integrated unit to the whole system. In this paper, a novel multi-generation plant is proposed to generate power, hydrogen and ammonia as a chemical fuel, drying, freshwater, heating, and cooling. For this reason, the Brayton cycle as prime unit using methane gas is integrated into the s-CO2 power cycle, organic Rankine cycle, PEM electrolyzer, freshwater production unit, cooling cycle and dryer unit. In order then to evaluate the designed integrated multigeneration system, thermodynamic analyses and parametric studies are performed, revealing that the energy and exergy efficiencies of the whole plant are found to be 69.08% and 65.42%. In addition, ammonia and hydrogen production rates have been found to be 0.2462 kg/s and 0.0631 kg/s for the methane fuel mass flow rate of 1.51 kg/s. Also, the effects of the reference temperature, pinch point temperature of superheater, combustion chamber temperature, gas turbine input pressure, and mass flow rate of fuel on numerous parameters and performance of the plant are investigated.  相似文献   

18.
In this paper, a combined power plant based on the dish collector and biomass gasifier has been designed to produce liquefied hydrogen and beneficial outputs. The proposed solar and biomass energy based combined power system consists of seven different subplants, such as solar power process, biomass gasification plant, gas turbine cycle, hydrogen generation and liquefaction system, Kalina cycle, organic Rankine cycle, and single-effect absorption plant with ejector. The main useful outputs from the combined plant include power, liquid hydrogen, heating-cooling, and hot water. To evaluate the efficiency of integrated solar energy plant, energetic and exergetic effectiveness of both the whole plant and the sub-plants are performed. For this solar and biomass gasification based combined plant, the generation rates for useful outputs covering the total electricity, cooling, heating and hydrogen, and hot water are obtained as nearly 3.9 MW, 6584 kW, 4206 kW, and 0.087 kg/s in the base design situations. The energy and exergy performances of the whole system are calculated as 51.93% and 47.14%. Also, the functional exergy of the whole system is calculated as 9.18% for the base working parameters. In addition to calculating thermodynamic efficiencies, a parametric plant is conducted to examine the impacts of reference temperature, solar radiation intensity, gasifier temperature, combustion temperature, compression ratio of Brayton cycle, inlet temperature of separator 2, organic Rankine cycle turbine and pump input temperature, and gas turbine input temperature on the combined plant performance.  相似文献   

19.
In this paper, a novel system with ash agglomerating fluidized bed gasification and CO2 capture to produce hydrogen and electricity is firstly designed in Aspen Plus. The newly-proposed system is composed of eight subsystems, namely air separation unit, gasification unit, water gas shift unit, Rectisol unit, CO2 compression unit, Claus unit, pressure swing adsorption unit, gas and steam turbine unit. The thermodynamic performance and hydrogen to coal ratio of the new proposed system are investigated. The results demonstrate that the hydrogen to coal ratio, energy efficiency, net electricity power and exergy efficiency of the overall system for Yangcheng anthracite are 0.096 kg/kg, 46.52%, 1.71 MW and 43.92%, respectively. Additionally, the exergy destruction ratio and exergy efficiency of each subsystem are researched. More importantly, the influences of the oxygen to coal ratio, steam to coal ratio and coal types on the hydrogen to coal ratio, energy efficiency and exergy efficiency are also studied.  相似文献   

20.
In this paper, a detailed review is presented to discuss biomass‐based hydrogen production systems and their applications. Some optimum hydrogen production and operating conditions are studied through a comprehensive sensitivity analysis on the hydrogen yield from steam biomass gasification. In addition, a hybrid system, which combines a biomass‐based hydrogen production system and a solid oxide fuel cell unit is considered for performance assessment. A comparative thermodynamic study also is undertaken to investigate various operational aspects through energy and exergy efficiencies. The results of this study show that there are various key parameters affecting the hydrogen production process and system performance. They also indicate that it is possible to increase the hydrogen yield from 70 to 107 g H2 per kg of sawdust wood. By studying the energy and exergy efficiencies, the performance assessment shows the potential to produce hydrogen from steam biomass gasification. The study further reveals a strong potential of this system as it utilizes steam biomass gasification for hydrogen production. To evaluate the system performance, the efficiencies are calculated at particular pressures, temperatures, current densities, and fuel utilization factors. It is found that there is a strong potential in the gasification temperature range 1023–1423 K to increase energy efficiency with a hydrogen yield from 45 to 55% and the exergy efficiency with hydrogen yield from 22 to 32%, respectively, whereas the exergy efficiency of electricity production decreases from 56 to 49.4%. Hydrogen production by steam sawdust gasification appears to be an ultimate option for hydrogen production based on the parametric studies and performance assessments that were carried out through energy and exergy efficiencies. Finally, the system integration is an attractive option for better performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号