首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma is a simple and effective method to prepare N-doped carbon materials and supported metal catalysts. In this work, Pd/C–C(NH3) and Pd/C–P(NH3) catalysts are prepared by heat treatment and cold plasma methods using Ar and NH3 as the working gas. The activity and stability of obtained catalysts are tested by formic acid dehydrogenation reaction. The results show that TOFinitial of Pd/C–P(NH3) is 527.1 h−1 at 50 °C, and the HCOOH decomposition rate is about 89.2% at 4 h. The hydrogen production of Pd/C–P(NH3) when used in first and third cycle are 1.14 and 1.14 times than that of Pd/C–C(NH3), and 1.24 and 13.24 times than that of commercial Pd/C. Various characterization techniques are used to characterize the structure of the prepared Pd/C catalysts. The results indicate that NH3 plasma is milder than NH3 thermal treatment. The high activity and stability of Pd/C–P(NH3) are mainly due to the NH3 cold plasma effectively achieving N-doping of the carbon support, and Pd nanoparticles with a small size and high dispersion. Atmospheric pressure NH3 cold plasma provides an effective method to prepare high-performance Pd/C catalysts for HCOOH dehydrogenation and plays a guiding role in the preparation of high-performance carbon-supported noble metal catalysts.  相似文献   

2.
Pd catalysts supported on activated carbon (Pd/C–NH3) toward HCOOH dehydrogenation were prepared by a simple adsorption method using ammonia (NH3) and Ar as the working gas. The results show that the TOFinitial of Pd/C–NH3 was 459.8 h−1 at 50 °C. When the reaction was carried out for 4 h, the HCOOH dehydrogenation ratio over Pd/C–NH3 was about 81.2%, which was 1.15 and 1.13 times, respectively, as that of the as-prepared Pd/C catalyst without any treatment (Pd/C–As) and the Pd/C catalyst purchased from Sigma-Aldrich (Pd/C-CM). The total amount of H2 and CO2 produced by using Pd/C–NH3 to decompose HCOOH in the third cycle was 99.4% of the gas produced by the first reaction cycle, and 1.80 and 12.60 times, respectively, as that of Pd/C–As and Pd/C-CM. The characterization results indicated that the Pd active species in Pd/C–NH3 migrated to the outer surface of the carbon support during the reaction, and the pore volume of the carbon support became larger, which were beneficial to the reaction. These factors made Pd/C–NH3 exhibit excellent HCOOH dehydrogenation activity and stability. NH3 adsorption is a simple and effective method for preparing high-performance Pd/C HCOOH dehydrogenation catalysts, and has important guiding significance for the preparation of other carbon supported noble metal catalysts.  相似文献   

3.
Atomically dispersed transition metals anchored on N-doped carbon have been successfully developed as promising electrocatalysts for acidic oxygen reduction reaction (ORR). Nonetheless, how to introduce and construct single-atomic active sites is still a big challenge. Herein, a novel concave dodecahedron catalyst of N-doped carbon (FeCuNC) with well confined atomically dispersed bivalent Fe sites was facilely developed via a Cu-assisted induced strategy. The obtained catalyst delivered outstanding ORR performance in 0.5 M H2SO4 media with a half-wave potential (E1/2) of 0.82 V (vs reversible hydrogen electrode, RHE), stemming from the highly active bivalent Fe-Nx sites with sufficient exposure and accessibility guaranteed by the high specific surface area and curved surface. This work provides a simple but efficient metal-assisted induced strategy to tune the configurations of atomically dispersed active sites as well as microscopy structures of carbon matrix to develop promising PGM-free catalysts for proton exchange membrane fuel cell (PEMFC) applications.  相似文献   

4.
Well-dispersed palladium nanoparticles (NPs) anchored on a porous N-doped carbon is prepared by wet chemical method, using metal organic frameworks (ZIF-8) as a precursor to derive the porous N-doped carbon support. Benefitting from the N-doping and the porous structure of the carbon materials, the final Pd NPs are in high dispersion and exhibit reduced particle sizes, with electronic structure and chemical status tuned to favor the formic acid decomposition (FAD). The prepared Pd/CZIF-8-950 catalysts show enhanced catalytic performance and selectivity for FAD, the turnover of frequency (TOF) and the mass activity up to 1166 h−1 and 11.01 mol H2 g−1 pd h−1 were obtained at 30 °C. This work provides an effective and easy way for synthesis the Pd-based catalyst, which has enormous application prospects for the next generation hydrogen energy preparation and storage.  相似文献   

5.
Metal-based catalysts within single-atom to 1–2 nm size range are attracting considerable attention recent years. Carbon-based materials with their excellent electro- and photo-chemical properties are ideal candidates as supporting substrate for constructing of metal catalyst. Here we report a palladium (less than 5 nm in average diameter) deposited Ni carbon nanotubes (CNTs) with Ni metal nanoparticles (NPs) to be around single atom to 1–2 nm on average. Mono-dispersed Pd NPs are homogeneously immobilized on both synthesized Ni- and N-doped CNTs and N-doped commercial made CNTs using poly(diallyldimethyl ammonium) chloride (PDDA) as the key bonding components. Enhanced electrocatalytic activity is observed in measurements including hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and methanol oxidation reaction (MOR), with some of the samples having higher HER (under acidic condition) and OER (under basic condition) activity comparing with the commercial Pd/C (40 wt%) sample. The result provides a forward-looking strategy for fabricating efficient and low-cost catalysts.  相似文献   

6.
The development of a facile yet efficient strategy to boost the catalytic performance of supported Pd nanoparticles (NPs) toward the dehydrogenation of formic acid (FA) is essential but remains challenging. Here, a novel hybrid nanocatalyst comprising Pd and Ni(OH)2 supported on porous carbon (PC) is developed. The obtained Pd–Ni(OH)2/PC nanocatalyst exhibits an excellent catalytic performance for FA dehydrogenation to produce hydrogen. The introduction of Ni(OH)2 in PC support can significantly promote the catalytic activity of Pd NPs toward FA dehydrogenation. Additionally, the catalytic property of Pd–Ni(OH)2/PC is correlated with the Pd/Ni ratio. The 2Pd–1Ni(OH)2/PC with the optimum Pd/Ni ratio of 2/1 exhibits the maximum turnover frequency (TOF) of 3409 h−1 at 60 °C for FA dehydrogenation. The highly dispersed ultrafine Pd–Ni(OH)2 hybrid NPs with numerous accessible active sites and Ni(OH)2−induced positive synergetic effects with Pd NPs considerably boost the catalytic performance for FA dehydrogenation.  相似文献   

7.
The nitrogen doped activated carbon (AC-N) has been successfully prepared with commercial activated carbon as carbon material followed by a simple N-doping method using melamine as nitrogen sources. Using AC-N as the supports, cobalt supported on N-doped activated carbon (Co/AC-N) were developed and used as catalyst for dry reforming reaction (DRM). It was discovered that the Co/AC-N catalysts revealed much higher catalytic performance for DRM reaction in comparison to activated carbon supported cobalt catalyst (Co/AC). Moreover, the catalytic activity was influenced by preparation conditions of AC-N such as calcination temperature and the doping amount of nitrogen. The catalysts were characterized by BET, XRD, XPS, H2-TPR, Raman spectroscopy and TEM. It was found that catalytic activities of the catalysts with different calcination temperature and nitrogen doping were influenced by catalyst surface defects and disorders, Co2+/Co3+ molar ratio, the content of nitrogen function groups (graphitic N, pyrrolic-N and pyridinic-N) and interaction between active metal and support. The Raman spectroscopy illustrated that the N-doped catalyst surface defects and disorders increased, which improved the performances of the Redox catalysts. The XPS valence band also revealed that higher Co2+/Co3+ molar ratio and nitrogen function groups was achieved by decreasing calcination temperature and increasing nitrogen doping. In short, the doping of nitrogen increased the structural defects and the interaction between active metals and supports, modified the surface electronic structure, which were facilitated the oxidation and reduction of methane and carbon dioxide.  相似文献   

8.
An improved synthesis scheme of non-precious metal N-doped carbon catalysts for oxygen reduction reaction is reported. The non-precious metal N-doped carbon catalysts were prepared by pyrolysis of the mixture (phenol resin, Ketjen black carbon support and cobalt phenanthroline complex). The drastic improvement of distribution state of Ketjen black supported non-precious metal N-doped carbon catalysts was observed by means of transmission electron microscopy (TEM). In addition, the non-precious metal N-doped carbon catalyst synthesized with Ketjen black carbon support showed much higher oxygen reduction reaction (ORR) activity relative to unsupported non-precious metal N-doped carbon catalyst in O2-saturated 0.5 mol l−1 H2SO4 at 35 °C. Moreover, the highest ORR activity was obtained with addition of optimum amount of Ketjen black carbon support was thirtyfold compared to unsupported non-precious metal N-doped carbon catalyst at 0.7 V. Similarly, the performance of a polymer electrolyte fuel cell (PEFC) using the non-precious metal N-doped carbon catalyst as the cathode electrode catalyst was obviously better than that of the non-precious metal N-doped carbon catalyst before optimization. Microstructure, specific surface area and surface composition of the non-precious metal N-doped carbon catalysts were analyzed by XRD, XPS and BET measurement with nitrogen physisorption, respectively.  相似文献   

9.
A carbon supported palladium (Pd/C-NaBH4-NH3) catalyst was synthesized via modified sodium borohydride reduction method using ammonia as the complexing reagent. The Pd/C catalysts were characterized by means of powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Rotating disk electrode (RDE), cyclic voltammetry (CV), electrochemical impedance spectra (EIS) and single cell measurements were employed to evaluate the activities of the catalysts. The as-prepared catalysts with face-centered cubic (fcc) structure are uniformly dispersed on the carbon supports. Twinned and polycrystalline structures are observed in the HRTEM image of Pd/C-NaBH4-NH3. The results indicate that the Pd/C-NaBH4-NH3 catalyst shows high activity for the oxygen reduction reaction. Single cell with Pd/C-NaBH4-NH3 as the cathode displays a maximum power density of 508 mW cm−2. The favorable performance of the Pd/C-NaBH4-NH3 catalyst may be attributed to the uniformly dispersed nanoparticles and more crystalline lattice defects.  相似文献   

10.
The electrocatalysis of water to hydrogen is expected to play an essential and significant role in the development of future electrochemical energy conversion and storage technologies, together with the exploration of green energy. However, the high cost of noble metal catalysts remains a key challenge and it still requires further investigations to fabricate high mass activity and stable electrocatalysts. Herein, we report a facile and economical approach to achieve atomically dispersed palladium on the nitrogen-doped mesoporous carbon matrix (Pd1/NMC) as the electrocatalyst for hydrogen evolution, which exhibits an overpotential of 37 and 118 mV at the current density of 10 and 100 mA cm?2, respectively, superior to the commercial platinum/carbon (Pt/C) and palladium/carbon (Pd/C) catalysts. Moreover, the mass activity of the Pd1/NMC catalyst surpasses that of Pt/C and Pd/C at 100 mV versus RHE in HER. Systematic characterizations demonstrate that the Pd atoms are atomically dispersed on the surface of NMC and stabilized by active nitrogen sites, inducing the isolated Pd atoms to form a favorable bivalent oxidation state. This method provides an atomic-level insights into preparing superior single-atom catalysts for energy-related applications and devices.  相似文献   

11.
Highly dispersed Pd and MnOx nanoparticles supported on the graphitic carbon nitride with different composition have been prepared by a simple liquid deposition-reduction method and used as an efficient FA decomposition catalyst for hydrogen generation. The catalytic activity depends on the Pd-MnOx composition of catalyst, the FA/SF ratio and the reaction temperature. The Pd-MnOx/CN-1 catalyst exhibited excellent catalytic activity for hydrogen generation with the initial TOF of 465 h?1 from formic acid-sodium formate mixture aqueous solution with a FA/SF ratio of 1:8 at 348 K. The synergetic effect between Pd nanoparticles and the carbon nitride support, the Mn/Pd ratios, the good dispersion of nanoparticles and the nature of the carbon nitride support were suggested to be responsible for the efficient catalytic performance of the Pd-MnOx/CN nanocatalysts.  相似文献   

12.
Pd/xCuO–10CNT (x = 1, 2, 3, 4) catalysts were synthesized using an improved polyol method. Uniformly prepared catalyst structures and chemical compositions of the catalysts delivered a high oxidation performance. The prepared catalysts were characterized via transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The formation of homogenous active Pd metal and CuO nanoparticle-modified CNT surfaces was found. Meanwhile, the electrocatalytic activity and the long-term stability performance of the prepared catalysts toward formic acid oxidation reaction (FAOR) were also employed via cyclic voltammogram (CV) and chronoamperometry (CA), respectively. Prominently, the prepared Pd/xCuO–CNT nanocomposite catalyst presented an outstanding electrocatalytic performance with a higher maximum forward peak current density (26.9 mA cm?2) than those of catalysts Pd/CNT (3.4 mA cm?2) and Pd/C (2.3 mA cm?2) toward FAOR in the H2SO4 electrolyte, representing high conductivity CNT, and dispersed Pd nanoparticles with a large active surface area, on the CuO-CNT support. Additionally, the prepared catalysts also had outstanding stability and an excellent CO poisoning tolerance through the modified Pd structures on CuO-supported CNT. The insertion of CuO onto the CNT surface before Pd loading provided additional electrochemical active sites due to the enhanced geometric and bifunctional system. CuO supports the adsorption of oxygen-containing species (OHads) on the catalyst surface, and the electron effect among Pd and Cu metals is beneficial for charge transfer.  相似文献   

13.
Hydrogen storage properties of carbon nanotubes (CNTs) modified by oxidative etching and decoration of Pd spillover catalysts are investigated. A mixed H2SO4/H2O2 solution containing ferrous ions (Fe2+) is useful to open the caps, to shorten the length, and to generate defects on CNTs. The Pd catalysts are deposited on the CNTs with the aid of supercritical carbon dioxide (scCO2); as a result, a highly dispersed Pd nanoparticles and an intimate connection between Pd and carbon surface can be obtained. Combination of the two approaches can optimize a hydrogen spillover reaction on CNTs, resulting in a superior hydrogen storage capacity of 1.54 wt% (at 25 °C and 6.89 MPa), which corresponds to an enhancement factor of ∼4.5 as compared to that of pristine CNTs.  相似文献   

14.
Hydrogen release from formic acid is a significant energy supply route. However, the current catalysts suffer from low catalytic efficiency and stability. Herein, a porous N-doped carbon material with high N content (16.87%) and a large surface area (1544 m2·g?1) were designed using a 2-dimensional metal-organic framework and etching agent potassium chloride. Due to its high N content and large surface area, ultrafine Pd particles are uniformly distributed on the porous N-doped carbon support, which effectively enhances excellent reactivity and enables a TOF value of 2365 h?1 under additive-free conditions. The research also revealed that the strong interaction between Pd particles and pyridinic-N species can significantly slow metal agglomeration. Hence, the Pd/NCZIF-L (KCl) displayed good activity even after 10 cycling experiments, and it is a particularly competitive catalyst for hydrogen release from formic acid.  相似文献   

15.
Developing an efficient catalyst for hydrogen (H2) generation from hydrolysis of ammonia borane (AB) to significantly improve the activity for the hydrogen generation from AB is important for its practical application. Herein, we report a novel hybrid nanostructure composed of uniformly dispersed Co@Co2P core-shell nanoparticles (NPs) embedded in N-doped carbon nanotube polyhedron (Co@Co2P/N–CNP) through a carbonization-phosphidation strategy derived from ZIF-67. Benefiting from the electronic effect of P doping, high dispersibility and strong interfacial interaction between Co@Co2P and N-CNTs, the Co@Co2P/N–CNP catalyst exhibits excellent catalytic performance towards the hydrolysis of AB for hydrogen generation, affording a high TOF value of 18.4 mol H2 mol metal?1 min?1 at the first cycle. This work provides a promising lead for the design of efficient heterogeneous catalysts towards convenient H2 generation from hydrogen-rich substrates in the close future.  相似文献   

16.
Catalytic decomposition of methane (CDM; CH4 → C + 2H2) is expected to be used for clean hydrogen production because CDM does not emit carbon dioxide. Recently, it was reported that Pd–based catalysts promotes CDM, simultaneously facilitating coupling of CH4 to form C2 hydrocarbons. In this study, varieties of supported Pd–M alloy catalysts (M = Fe, Co, Ni, Cu, Zn, Ga, In, Sn, Au, Pb, and Bi) were synthesized and their activities for the CDM and CH4 coupling were examined. The catalytic activity for CH4 strongly depended on the types of Pd–M. Pd–M/Al2O3 (M = Ni, Fe, Co, Au) showed high activity for CDM. In addition to the production of hydrogen by the CDM, Pd–Au/Al2O3 formed C2 hydrocarbons such as ethane and ethylene via the coupling of CH4. Effects of Pd/Au ratio and reaction temperatures were examined and the role of Au for the CH4 conversion reaction was discussed.  相似文献   

17.
Polybenzimidazole (PBI) was studied as an ionomer binder at varying ratios (1–7) in a 20–40 wt% Pt–Pd/C cathode-coupled catalyst layer for the oxygen reduction reaction (ORR) in a high-temperature proton exchange membrane fuel cell (HT-PEMFC). Catalytic activity was examined by CV and LSV, while the properties of the catalysts were characterized by FESEM-EDX, N2 adsorption–desorption, XRD and FTIR. The results showed that the distribution of metals on the carbon surface, carbon wall thickness and the interaction between ionomer and coupled catalysts affected the ORR performance. The fabricated membrane electrode assembly with 5:95 PBI: 30 wt% Pt–Pd/C catalyst ratio exhibited the best performance and highest durability for HT-PEMFC at 170 °C, yielding a power density of 1.30 Wcm−2 with 0.02 mgPt/cm Pt loading. This performance of ultra-low metal loading of coupled Pt–Pd/C electrocatalyst with PBI binder was comparable to those reported by other studies, highlighting a promising catalyst for fuel cell application.  相似文献   

18.
Direct methanol and formic acid fuel cells attracted extensive attention with high specific energy and low operating temperature. The efficient electrocatalyst was one of the important factors to limit their commercial applications. Here, the nitrides-modified Pd/C catalysts (Pd–NbN/C, Pd–Mo2N/C, Pd-VN/C and Pd-BN/C) were prepared using sodium citrate as a reducing agent in ethylene glycol solution. The mass activities followed the trend of Pd–NbN/C > Pd–Mo2N/C > Pd-VN/C > Pd-BN/C > Pd/C, where Pd–NbN/C exhibited the highest mass activity (4052.19 A gPd?1) for MOR, 19.2 times that of the commercial Pd/C (210.53 A gPd?1). Electrochemical measurements (LSV, Tafel, EIS, CA) indicated that the addition of nitrides increased the charge-transfer kinetics, reaction rate and CO tolerance of catalysts for MOR in alkaline media. The rate-determining step was COads oxidation process. Combined the structural analysis (HRTEM, XRD, XPS, ICP) with electrochemical results, the enhanced catalytic performance was ascribed to that higher ECSAs and the charge transfer between Pd and nitrides, leading to the negative shift of the d-band center towards the Fermi level. The linear correlations were found for the d-band center VS the mass activities and the onset potential of CO oxidation VS the d-band center, indicating that the activity and anti-CO poisoning ability could be enhanced by controlling the d-band structure of catalysts for MOR. Furthermore, the higher mass activity for FAOR in acidic media suggested that nitrides-modified Pd/C may be the promising bi-functional materials.  相似文献   

19.
The development of highly active oxygen reduction reaction (ORR) catalysts with low-loading of precious metals is imperative but remains a great challenge. Herein, Pd/B,N-CDs@CNT composite catalysts was designed with Pd nanoparticles immobilized on hybrid support composed of B,N-doped carbon dots (B,N-CDs) and the multi-wall carbon nanotubes (CNT) using a simple methanol reduction method. The deposited Pd nanoparticles exhibit clean surface, low crystallinity and surface distortion. The Pd/B,N-CDs@CNT catalyst shows significantly enhanced ORR activity, with the mass activity about 5–6 times higher than that of commercial Pt/C. Thus prominent ORR performance is mainly attributed to the unique microstructure of Pd nanoparticles. Moreover, the composited B,N-CDs and the doped B, N heteroatoms further improve the ORR performance, in which B,N-CDs supply more absorption sites, the formation of N–Pd facilitates the electron transfer, B doping can promote the adsorption of oxygenated species and weaken the strong interaction between Pd and C. Furthermore, the B, N co-doping plays a synergistic effect. This strategy provides a simple and mild method for designing highly efficient electrocatalysts with ultra-low precious metals in alkaline electrolytes.  相似文献   

20.
Exploring efficient and durable non-precious metal catalysts for oxygen reduction reaction (ORR) has long been pursued in the field of metal-air batteries, fuel cells, and solar cells. Rational design and controllable synthesis of desirable catalysts are still a great challenge. In this work, a novel approach is developed to tune the morphologies and structures of Fe–N–C catalysts in combination with the dual nitrogen-containing carbon precursors and the gas-foaming agent. The tailored Fe–N1/N2–C-A catalyst presents gauze-like porous nanosheets with uniformly dispersed tiny nanoparticles. Such architectures exhibit abundant Fe-Nx active sites and high-exposure surfaces. The Fe–N1/N2–C-A catalyst shows extremely high half-wave potential (E1/2, 0.916 V vs. RHE) and large limiting current density (6.3 mA cm−2), far beyond 20 wt% Pt/C catalyst for ORR. This work provides a facile morphological and structural regulation to increase the number and exposure of Fe-Nx active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号