首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excellent light harvest, efficient charge separation and sufficiently exposed surface active sites are crucial for a given photocatalyst to obtain excellent photocatalytic performances. The construction of two-dimensional/two-dimensional (2D/2D) or zero-dimensional/2D (0D/2D) binary heterojunctions is one of the effective ways to address these crucial issues. Herein, a ternary CdSe/WS2/g-C3N4 composite photocatalyst through decorating WS2/g-C3N4 2D/2D nanosheets (NSs) with CdSe quantum dots (QDs) was developed to further increase the light harvest and accelerate the separation and migration of photogenerated electron-hole pairs and thus enhance the solar to hydrogen conversion efficiency. As expected, a remarkably enhanced photocatalytic hydrogen evolution rate of 1.29 mmol g−1 h−1 was obtained for such a specially designed CdSe/WS2/g-C3N4 composite photocatalyst, which was about 3.0, 1.7 and 1.3 times greater than those of the pristine g-C3N4 NSs (0.43 mmol g−1 h−1), WS2/g-C3N4 2D/2D NSs (0.74 mmol g−1 h−1) and CdSe/g-C3N4 0D/2D composites (0.96 mmol g−1 h−1), respectively. The superior photocatalytic performance of the prepared ternary CdSe/WS2/g-C3N4 composite could be mainly attributed to the effective charge separation and migration as well as the suppressed photogenerated charge recombination induced by the constructed type-II/type-II heterojunction at the interfaces between g-C3N4 NSs, CdSe QDs and WS2 NSs. Thus, the developed 0D/2D/2D ternary type-II/type-II heterojunction in this work opens up a new insight in designing novel heterogeneous photocatalysts for highly efficient photocatalytic hydrogen evolution.  相似文献   

2.
To create hybrid composites for highly effective photocatalytic hydrogen evolution reactions, the photogenerated charge separation efficiency at the hybrid interface and the surface reaction kinetics at the reactive sites are key factors. In this work, CoFe hydroxide nanosheets prepared by dealloying were first mixed with graphitic carbon nitride (g-C3N4) to synthesize a CoFe2O4/g-C3N4 composite with strong Co-N bonds at the interface by a simple hydrothermal method. It was found that the presence of Co-N bonds between the components in the composites enhances the separation and transfer by photogenerated carriers at the composite interface. Furthermore, the presence of Co-N bonds enhanced the synergistic effect of the hybrid, which significantly boosts their photocatalytic performance in comparison to their counterparts. Under full-spectrum light, the composite photocatalyst has a greater efficiency of photocatalytic water H2 evolution (6.793 mmol/g−1·h−1) and exceptional stability when compared to pure g-C3N4 (0.236 mmol/g−1·h−1) and CoFe2O4 (0.088 mmol/g−1·h−1). Under visible irradiation, the photocatalytic activity of the composite (0.556 mmol/g−1·h−1) for H2 evolution increased by factors of 28.37 and 75.8 when compared to pure g-C3N4 and CoFe2O4, respectively.  相似文献   

3.
Here we report a 2D-2D heterostructure of g-C3N4/UMOFNs photocatalysts via mechanical grinding two kinds of two-dimensional nanosheets of g-C3N4 nanosheets and UMOFNs, which exhibits enhanced H2 evolution from water with simulated solar irradiation. g-C3N4 nanosheets are in close contact with UMOFNs, and there is a certain interaction between them, showing the effect of superimposition on the two-dimensional layer. The 2D-2D heterostructure offers a maximal photocatalytic hydrogen production activity of 1909.02 μmol g−1 h−1 with 3 wt% of UMOFNs, which is 3-fold higher than that of g-C3N4 nanosheets (628.76 μmol g−1 h−1) and 15-flod higher than that of bulk g-C3N4 (124.30 μmol g−1 h−1). The significant increasement of photocatalysis is due to 2D-2D heterostructure possessing a short charge transfer distance and large contact area between g-C3N4 and UMOFNs. The highly dispersed NiO, CoO and π-π bonds in UMOFNs of 2D-2D structure also promote charge transfer and enhance the photocatalytic activity.  相似文献   

4.
Two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheets, as the promising photocatalyst with fascinating properties, have become a “rising star” in the field of photocatalysis. Although g-C3N4 nanosheets exfoliated from the bulk g-C3N4 powders are extensively emerged, developing a simple synthetic approach is still full of challenge. To this end, here we report a direct polymerization strategy to fabricate the ultrathin g-C3N4 nanosheets, that is only heating treatment of thiourea in air without addition of any template. The photocatalytic activities of as-prepared samples were evaluated by photoreduction of water to hydrogen (H2) using triethanolamine as sacrificial agent and Pt as co-catalyst under visible-light irradiation (λ > 420 nm). As a result, our few-layered g-C3N4 nanosheets with an average thickness of 3.5 nm exhibit a superior visible-light photocatalytic H2 evolution rate (HER) of 1391 μmol g−1 h−1 and a remarkable apparent quantum efficiency of 6.6% at 420 nm. Eventually, the HER of as-fabricated ultrathin g-C3N4 nanosheets is not only much higher than the dicyandiamide-derived g-C3N4 or melamine-derived g-C3N4, but also greater than the thermal-oxidation etched g-C3N4 nanosheets under the same condition.  相似文献   

5.
Ion doping is an effective method to improve the photocatalytic activity of graphitic carbon nitride (g-C3N4) by providing a photocarriers transfer channel. But limited by the bonds in heptazine rings, photoelectrons are still trapped in the structure. Therefore, both potassium ions and nitrogen defects were successfully introduced into g-C3N4 by high temperature calcination to accelerate the charges transfer between both interlayers and intralayer of g-C3N4. The results showed that the hydrogen production rate of g-C3N4 modified simultaneously by nitrogen defects and potassium ions reaches 1722.4 μmol·g−1·h−1, which is 8 times that of pristine g-C3N4. Based on various characterization techniques and DFT calculations, we attributed the enhanced photocatalytic hydrogen evolution to the improved light adsorption, more delocalized HOMO-LUMO, and stronger interlayer interactions. This work will provide a promising way to enhance photocatalytic hydrogen evolution of g-C3N4 and a possible mechanism was proposed.  相似文献   

6.
Bimetallic PtNi-decorated graphitic carbon nitride (g-C3N4) nanotubes were prepared through calcining the mixture of urea and thiourea in the presence of Pluronic F127, followed by deposition of bimetallic PtNi nanoparticles (NPs) via chemical reduction. It is found that the photocatalytic activity of PtNi/g-C3N4 nanotubes is strongly dependent on the molar ratio of Pt/Ni and the highest activity is observed for Pt1Ni1/g-C3N4. Under visible light (λ > 420 nm) irradiation, the H2 generation rate over Pt1Ni1/g-C3N4 nanotubes is 104.7 μmol h?1 from a triethanolamine (10 vol%) aqueous solution, which is higher than that of Pt/g-C3N4 nanotubes (98.6 μmol h?1) and is about 47.6 times higher than that of pure g-C3N4 nanotubes. The cyclic photocatalytic reaction indicates that our Pt1Ni1/g-C3N4 nanotubes function as a stable photocatalyst for visible light-driven H2 production. The effect of bimetallic PtNi NPs in the transfer and separation of photogenerated charge carriers occurring in the excited g-C3N4 nanotubes was investigated by performing photo-electrochemical and photoluminescence measurements. Our results reveal that bimetallic PtNi could replace Pt as a promising cocatalyst for photocatalytic H2 evolution with better performance and lower cost.  相似文献   

7.
In this report, a novel g-C3N4/Au/BiVO4 photocatalyst has been prepared successfully by assembling gold nanoparticles on the interface of super-thin porous g-C3N4 and BiVO4, which exhibits outstanding photocatalytic performance toward hydrogen evolution and durable stability in the absence of cocatalyst. FESEM micrograph analysis suggested that the intimate contact between Au, BiVO4, and g-C3N4 in the as-developed photocatalyst allows a smooth migration and separation of photogenerated charge carriers. In addition, the XRD, EDX and XPS analysis further confirmed the successful formation of the as-prepared g-C3N4/Au/BiVO4 photocatalyst. The photocatalytic hydrogen production activity of the developed photocatalyst was evaluated under visible-light irradiation (λ > 420 nm) using methanol as a sacrificial reagent. By optimizing the 5-CN/Au/BiVO4 composite shows the highest H2 evolution rate (2986 μmolg−1h−1), which is 15 times higher than that of g-C3N4 (199 μmolg−1h−1) and 10 time better than bare BiVO4 (297 μmolg−1h−1). The enhancement in photocatalytic activity is attributed to efficient separation of the photoexcited charges due to the anisotropic junction in the g-C3N4/Au/BiVO4 system. The enhancement in photocatalytic activity is attributed to efficient separation of the photoexcited charges due to the anisotropic junction in the g-C3N4/Au/BiVO4 system.  相似文献   

8.
Boron doped nanodiamonds (BDND) were coupled with graphitic carbon nitride (g-C3N4) nanosheets to form a heterojunction via a facile pyrolysis approach. The BDND@g-C3N4 heterojunction exhibits enhanced visible-light absorbance, improved charge generation/separation efficiency and prolonged lifetime of carriers, which lead to the enhanced photocatalytic activities for the hydrogen evolution and organic pollution under visible-light irradiation. The optimal H2 evolution rate and apparent quantum efficiency at 420 nm of the BDND@g-C3N4 heterojunction is 96.3 μmol h−1 and 6.91%, which is about 5 and 2 times higher than those of pristine g-C3N4 nanosheets (18.2 μmol h−1 and 3.92%). No obvious decrease in hydrogen generation rate is observed in the recycling experiment due to the high photo-stabilization of the BDND@g-C3N4 composite. The degradation kinetic rate constant of organic pollution of the BDND@g-C3N4 structure is 0.1075 min−1, which is 3 times higher compared to pristine g-C3N4. This work may provide a promising route to construct highly efficient non-metal photocatalysts for hydrogen evolution and organic pollution degradation under visible light irradiation.  相似文献   

9.
g-C3N4 has shown great potentials in photocatalytic water splitting to produce hydrogen. Herein, we successfully synthesized g-C3N4 nanosheets via exfoliating bulk g-C3N4. And different metal nanoparticles were photo-deposited onto the surface of g-C3N4 nanosheets. The photocatalytic H2 production activity of g-C3N4 nanosheets increased from 0 to 11.2 μmol/h/gcat. The Pt loaded g-C3N4 nanosheets manifested the highest H2 production activity with a rate of 589.4 μmol/h/gcat. In addition, the hydrogen evolution rate was further enhanced with addition of external bias to fabricate a photoelectrocatalytic (PEC) system. And the maximum hydrogen production rate (23.1 mmol/h/m2) was obtained at a voltage of 0.6 V (vs. Ag/AgCl). The enhancement in H2 production may be due to the following reasons: (1) Two-dimensional atomic flakes is beneficial to increase the specific surface area of g-C3N4, enhance the mobility of carriers, and improve the energy band structure, (2) Pt nanoparticles play an important role in g-C3N4 electron transport, (3) the g-C3N4 nanosheets loaded with Pt nanoparticles exhibited significant enhancement in photoelectrocatalytic performance, which may be attributed to its enhanced electronic conductivity and photoelectrochemical surface area, (4) Pt inhibited the recombination of photogenerated carriers and significantly improved the photocatalytic performance. The enhancement mechanism was deeply discussed and explained in this work.  相似文献   

10.
The effective separation of photogenerated charge carriers, their transport and interfacial contact is of great significance for excellent performance of semiconductor based photocatalysts. Herein, we report the fabrication of two dimensional (2D) nanosheets heterojunction comprising of N-doped ZnO nanosheets loaded over graphitic carbon nitride (g-C3N4) nanosheets for enhanced photocatalytic hydrogen evolution. The prepared 2D-2D heterojunctions with varying amount of g-C3N4 nanosheets have been characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) techniques. The optimized heterojunction photocatalyst with 30 wt% of g-C3N4 nanosheets (NZCN30) exhibit hydrogen evolution rate of 18836 μmol h?1 gcat?1 in presence of Na2S and Na2SO3 as sacrificial agents under simulated solar light irradiation. The enhanced photocatalytic performance of NZCN30 heterojunction has been supported well by photoluminescence and photoelectrochemical investigations, which shows the minimum recombination rate and high photoinduced current density, respectively. In addition, the existence of 2D-2D interfacial contact plays a major role in enhanced H2 evolution by high face-to-face contact surface area for separation of photogenerated charge carriers in space which facilitate their transfer for H2 generation. This work paves way for the development of 2D-2D heterojunctions for diverse applications.  相似文献   

11.
The photocatalytic hydrogen evolution performance of g-C3N4 was enhanced via the hybridization with montmorillonite (MMT) and using NiCoP as cocatalyst. The highest hydrogen-evolution rate from water splitting under visible-light irradiation observed over MMT/g-C3N4/15%NiCoP was 12.50 mmol g−1 h−1 under 1.0 mmol L−1 of Eosin Y-sensitization at pH of 11, which was ∼26.0 and 1.6 times higher than that of MMT/g-C3N4 (0.48 mmol g−1 h−1) and g-C3N4/15%NiCoP (7.69 mmol g−1 h−1). The apparent quantum yield at 420 nm reached 40.3%. The remarkably improved photocatalytic activity can be ascribed to the increased dispersion of g-C3N4 layers, staggered conduction band potentials between g-C3N4 and NiCoP, as well as the electrostatic repulsion originated from negatively charged MMT. This work demonstrates that MMT can be an outstanding support for the deposition of catalytically active components for photocatalytic hydrogen production.  相似文献   

12.
In this study, B-doped g-C3N4 nanosheets (BCN) were prepared using a thermal-oxidative etching method, resulting in a semiconductor with a large specific surface area. The B-doping enhances the light absorption of graphitic carbon nitride(g-C3N4) and improves the photogenerated carrier lifetime. The optimal B-containing amount resuled in a hydrogen production rate of 1297 μmol g−1 h−1 for g-C3N4 nanosheets. Furthermore, zeolitic imidazolate framework (ZIF)67/BCN heterostructures were successfully obtained through simple mechanical grinding approaches. The BCN provided abundant active sites and contributed to excellent encapsulation on the surface of ZIF67. The obtained ZIF67/BCN photocatalyst displayed an H2 evolution rate of 3392 μmol g−1 h−1, attributed to forming type-II heterojunctions between ZIF67 and BCN. Moreover, the BCN exhibited a higher conduction band (CB) potential with ZIF67 than CN, resulting in more efficient light-driven charge separation between ZIF67 and BCN and enhanced photocatalytic performance. This work provides a meaningful reference for improving the activity of g-C3N4 photocatalysts.  相似文献   

13.
Engineering surface-active facets of metal cocatalysts is one of the most widely explored strategies to develop advanced photocatalysts and promote photocatalytic solar energy conversion. Here, the surface-active facets of Pd nanocrystals in Pd/g-C3N4 photocatalyst was related to the injection flow rate of PdCl2. When PdCl2 was injected at a low flow rate of 7.5 mL/h (7.5-Pd/g-C3N4), the Pd nanocrystals were uniformly dispersed onto the g-C3N4 with exposed low-index {100} and {111} surface-active facets. However, increasing the injection flow rate to 150 mL/h (150-Pd/g-C3N4) formed Pd nanocrystals where only the {100} surface-active facet was exposed. Under visible light irradiation, the 7.5-Pd/g-C3N4 nanocomposite exhibited excellent water splitting activity for hydrogen production (7.61 mmol g−1 h−1), which was significantly better than with the 150-Pd/g-C3N4 nanocomposite (3.3 mmol g−1 h−1). Theoretical calculations and experimental results confirm the importance of the {111} surface-active facets in the 7.5-Pd/g-C3N4 nanocomposite for promoting photocatalytic activity.  相似文献   

14.
Carbon dots (CDs) hold great promise for photocatalytic application owning to their low production cost, unique optical properties, as well as excellent stability and conductivity. Integrating CDs in graphite carbon nitride (g-C3N4) nanosheets helps to broaden visible light absorption, retard charge recombination and promote photoelectrons transport. Herein, we demonstrated a simple strategy to introduce CDs on g-C3N4 nanosheets by hydrothermal treatment of ginkgo leaves followed by thermal polymerization of urea. We found that there was were two volcano-trends in the photocatalytic H2 evolution rate with the increase of CDs loading. As a result, the optimized CDs/g-C3N4 nanocomposites demonstrated a superior hydrogen evolution rate as high as 3.12 mmol g?1·h?1 and 14.4% apparent quantum efficiency (AQE) was achieved at 420 nm visible light irradiation. The contribution of CDs towards the photocatalytic hydrogen evolution enhancement was discussed in depth via experiment characterization and Density functional theory (DFT) calculation. This work may shed light on the rational design and bottom-up synthesis of eco-friendly energy conversion materials with high-performance and low cost.  相似文献   

15.
The two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheets based composites are prepared in the form of the NiS/g-C3N4, CdS/g-C3N4 and CdS/NiS/g-C3N4 using a facile and reliable method of chemical deposition. The TEM and HRTEM images demonstrated a spectacular representation of the 2D lamellar microstructure of the g-C3N4 with adequately attached CdS and NiS nanoparticles. The changes in crystallinity and the surface elemental valence states of composites with the incorporation of two metal sulphides are studied, which confirmed the formation of composites. The photocatalytic response of the composites was estimated by photodegradation of Rhodamine B (C28H31ClN2O3–RhB), and the ternary composite CdS/NiS/g-C3N4 samples exhibited the superior photocatalytic performance. Further, the free radical capture and electron paramagnetic resonance (EPR) spectroscopy experiments identified the main active species that contributed to the photocatalytic reaction. Besides, the samples’ photocatalytic performance was evaluated by photocatalytic hydrogen production. The stability of the performance-optimized composite was determined by employing cyclic experiments over five cycles. The CdS/NiS/g-C3N4 showed the highest efficiency of hydrogen production i.e. about 423.37 μmol.g?1.h?1, which is 2.89 times that of the pristine g-C3N4. Finally, two types of heterojunction structures were proposed to interpret the enhanced photocatalytic efficiency.  相似文献   

16.
A novel hierarchical TiO2 spheroids embellished with g-C3N4 nanosheets has been successfully developed via thermal condensation process for efficient solar-driven hydrogen evolution and water depollution photocatalyst. The photocatalytic behaviour of the as-prepared nanocomposite is experimented in water splitting and organic pollutant degradation under solar light irradiation. The optimal ratio of TiO2 spheroids with g-C3N4 in the nanocomposite was found to be 1:10 and the resulting composite exhibits excellent photocatalytic hydrogen production of about 286 μmol h?1g?1, which is a factor of 3.4 and 2.3 times higher than that of pure TiO2 and g-C3N4, respectively. The outstanding photocatalytic performance in this composite could be ascribed as an efficient electron-hole pair's separation and interfacial contact between TiO2 spheroids with g-C3N4 nanosheets in the formed TiO2/g-C3N4 nanocomposite. This work provide new insight for constructing an efficient Z-scheme TiO2/g-C3N4 nanocomposites for solar light photocatlyst towards solar energy conversion, solar fuels and other environmental applications.  相似文献   

17.
The design and development of noble metal-free, low-cost and stable co-catalyst are of great significance to the practical application of photocatalysts. In this work, the Mo incorporated Ni nanosheets (MoNi NSs) are successfully prepared and loaded onto g-C3N4 via a simple and controllable method. The controlled loading of MoNi NSs with an optimal Mo intake can greatly enhance the photocatalytic H2-evolution property of g-C3N4 (Mo0.25Ni0.75/CN5). Specifically, the Mo0.25Ni0.75/CN5 exhibits the highest photocatalytic H2-evolution rate of 273.2 μmol h−1 (5464 μmol h−1 g−1), which is the highest rate under one-solar light in the g-C3N4 systems coupled with noble-metal-free co-catalysts. The greatly enhanced photocatalytic H2-evolution activity of MoNi/g-C3N4 is attributed to the role of MoNi as an outstanding co-catalyst to promote the carriers’ separation and transfer, and accelerate the surface H2 evolution reaction (HER).  相似文献   

18.
Ceria dioxide supported on graphitic carbon nitride (CeO2/g-C3N4) composites were facilely synthesized to be application for photocatalytic hydrogen (H2) generation in this present work. The physical and chemical properties of CeO2/g-C3N4 nanocomposites were determined via a series of characterizations. The CeO2/g-C3N4 composites prepared by facile thermal annealing and rotation-evaporation method exhibit excellent photocatalytic H2 evolution with visible-light illumination. The best hydrogen generation rate of CeO2/g-C3N4 composite with 1.5 wt% Pt is 0.83 mmol h−1 g−1, which is almost same as that of composite with 3 wt% Pt prepared by simple physical mixing method. The significantly developed photocatalytic activity of CeO2/g-C3N4 composite is majorly ascribed to the stronger interfacial effects with the more visible-light absorbance and faster electron transfer. This work reveals that construction of the CeO2/g-C3N4 composite with high disperse and close knit by the facile thermal annealing and rotation-evaporation method could be an effective method to achieve excellent photocatalytic hydrogen evolution performance.  相似文献   

19.
Novel PdAg bimetallic alloy nanoparticle modified graphitic carbon nitride (g-C3N4) nanosheet was designed and prepared by an in situ chemical reduction procedure. By optimizing the loading content of the PdAg alloy NPs, the PdAg/g-C3N4 composite photocatalyst showed a champion photocatalytic hydrogen generation rate of 3.43 mmol h−1 g−1, and the apparent quantum yield (AQY) was determined to be 8.43% at 420 nm. Moreover, the photoluminescence and photoelectrochemical experimental results suggest that a higher separation efficiency of photo-induced charge carriers (e- and h+) was obtained after loading PdAg alloy NPs on g-C3N4. The experimental outcomes indicate that there is a synergistic effect formed between PdAg and g-C3N4, which could significantly promote the charge transfer photo-induced charge carriers in the hybrid sample. A reasonable catalytic mechanism for the enhanced photocatalytic performance of the composite photocatalyst was proposed and verified by TRPL measurement, which could be taken as a guidance for the development of novel high performance catalytic system.  相似文献   

20.
Fabricating 0D/2D heterojunctions is considered to be an efficient mean to improve the photocatalytic activity of g-C3N4, whereas their applications are usually restricted by complex preparation process. Here, the 0D/2D SnO2/g-C3N4 heterojunction photocatalyst is prepared by a simple one-step polymerization strategy, in which SnO2 nanodots in-situ grow on the surface of g-C3N4 nanosheets. It shows the outstanding photocatalytic H2 production activity relative to g-C3N4 under the visible light, which is due to the formation of 0D/2D heterojunction significantly contributing to the separation of photogenerated charge carriers. In particular, the H2 production rate over the optimal SnO2/g–C3N4–1 sample is 1389.2 μmol h−1 g−1, which is 6.06 times higher than that of g-C3N4 (230.8 μmol h−1 g−1). Meanwhile, the AQE value of H2 production over the SnO2/g–C3N4–1 sample reaches up to a maximum of 4.5% at 420 nm. This work develops a simple approach to design and fabricate g–C3N4–based 0D/2D heterojunctions for the high-efficiency H2 production from water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号