首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the effect of Ce content on hydrogen induced cracking (HIC) of X80 pipeline steel has been investigated. The results show that as the Ce content increased from 0 wt% to 0.0042 wt%, 0.016 wt% and 0.024 wt%, the HIC susceptibility of tested steels decreased first and then increased. The steel containing 0.016 wt% Ce possessed the lowest HIC susceptibility because Ce modified inclusions, promoted the formation of acicular ferrite, and decreased the number of hydrogen traps and intergranular cracks.  相似文献   

2.
In the present work, the critical crack nucleation size and the hydrogen trapping capability of inclusion were discussed with a numerical simulation considering the factors of inclusion/matrix heterojunction. The results showed that the inclusion composition had a significant effect on hydrogen capacity and its critical nucleation size of hydrogen-induced cracking (HIC). The MnS inclusions exhibited a larger critical size tolerance of HIC nucleation (approximately 2.5 μm), but for some typical oxide inclusions, it ranged between 0.1 and 0.4 μm. In addition, two sheets of steel containing different composition, morphology, and distribution of inclusions were studied by the standard-based test and thermal desorption spectroscopy (TDS) to evaluate the HIC susceptibility and hydrogen trapping behaviour. The results complementarily demonstrated that when controlling the non-metallic inclusions into the proper size and compound with MnS into the sphere, the HIC resistance of steel could be efficiently improved.  相似文献   

3.
The microstructure of API X70 pipeline steel was modified by applying different heat treatments including water-quenched, water-sprayed, and water-quenched and tempered. Hydrogen induced cracking behavior was investigated on the X70 steel at these heat treatments. Two test methods, Japanese Industrial Standard (JIS) and vacuum thermal desorption, were used to release hydrogen from reversible and irreversible traps. The experimental results showed that the highest amount of discharged hydrogen in reversible and irreversible traps was related to the water-sprayed and as-received steels. The hydrogen discharged content from reversible traps reached to a saturation level after 8 h of charging, and it decreased considerably when the steels were charged for 15 h and 24 h. Hydrogen discharge tests proved that a higher amount of hydrogen inside steel is not a reliable measure for HIC evaluation. HIC test results also document that the water-quenched steel with agglomerated martensite particles had the highest susceptibility to HIC. Texture study results show that a low fraction of important texture components, such as {023}, {321} and {332}, cannot be reliably used to evaluate HIC. As a result, a novel method of manufacturing of pipeline steels with an optimized texture is required to increase safety and reliability of transportation of sour gas and oil.  相似文献   

4.
Hydrogen Induced Cracking (HIC) in carbon steels is a well-studied mechanism, where diffusing hydrogen atoms accumulates at the steel imperfections/laminations to create gaseous hydrogen with very high pressure, leading to initiation and growth of internal cavities, so-called HIC. Measurements of relevant fracture toughness properties of non-HIC resistant steels in hydrogen environment is critical to predict and assess the initiation and growth of HIC. The present work attempts to quantify the effect of hydrogen on the fracture toughness properties (KQ and CTOD) of an API X42 pipeline steel under simulated H2S in-service conditions. The fracture toughness properties are measured in TL and SL directions: perpendicular and parallel to the pipeline wall thickness, respectively, following ASTM E1820, standard. Since the X42 is a non-HIC resistant steel, the measurement of the fracture toughness properties in the SL direction is more relevant in terms of HIC initiation and growth than fracture toughness properties in the TL direction. Indeed, parallel to the thickness of the pipeline wall, X42 steel shows microstructural features prone to HIC formation and growth. Steady state H2S in-service conditions were simulated by charging the specimen for 48 h using a special electrolytic solution and then tested (ex-situ) to evaluate the fracture toughness properties. The steady state H2S environment was obtained by measuring the Hydrogen Concentration (CH) in the bulk of the specimen, using Thermal desorption Spectroscopy at three levels of CH. It was observed that the KQ was not affected in the SL direction, while it was reduced in the TL direction for 1.5 ppmw of CH. The CTOD showed mixed results in the TL direction while it was significantly reduced in the SL direction reaching a saturation at 1 ppmw of CH. Besides, microstructural analyses showed that the presence of inclusions coalescence in form of dimples promote the early failure, which is more pronounced in the hydrogen environment especially at higher levels of CH.  相似文献   

5.
In this work, the hydrogen-induced cracking (HIC) behavior of X100 pipeline steel was investigated by a combination of tensile test, electrochemical hydrogen permeation measurement and surface characterization techniques. The effect of inclusions in the steel on the crack initiation was analyzed. Results demonstrated that the amount of hydrogen-charging into the X100 steel specimen increases with the charging time and charging current density. Hydrogen-charging will enhance the susceptibility of the steel to HIC. The cracks initiate primarily at inclusions, such as aluminum oxides, titanium oxides and ferric carbides, in the steel. The diffusivity of hydrogen at room temperature in X100 steel is determined to be 1.04 × 10−8 cm2/s.  相似文献   

6.
Hydrogen induced cracking (HIC) susceptibility of the welded X100 pipeline steel was evaluated in NACE “A” solution at room temperature according to the NACE TM0284-2011 standard. Both the kinetic parameters of the permeability (JL), the apparent diffusivity (Dapp) and the concentration of reversible and irreversible hydrogen in the base metal and welded joint of X100 pipeline steel were quantitatively investigated by hydrogen permeation test. The results showed that the welded joint with an inhomogeneous microstructure had a higher trap density and more susceptible to HIC due to two orders of magnitude larger in the concentration of irreversible hydrogen than that of base metal, though all presenting poor HIC resistance for both base metal and the welded joint. The HIC cracks initiated from the inclusions enriching in Al, Ca, Si, Mn. The cracks are primarily transgranular, accompanying with limited intergranular ones.  相似文献   

7.
The effect of microstructural features on the hydrogen induced cracking (HIC) susceptibility of two API 5L X65 pipeline steels were investigated by cathodic charging, hydrogen permeation and hydrogen microprint experiments. Microstructural evaluation after hydrogen charging revealed cracks at the mid-thickness (segregation zone) of both plates. However, more severe cracks were observed in the plate with higher dislocation density and residual stresses. The plate with lower plastic strain and more {111}-oriented grains had less severe cracks. Inclusions found along the crack path, comprising of Si-enriched oxides and carbides contributed to the initiation and propagation of cracks. The variation of the trapping behaviour and hydrogen diffusion through the plates were examined. The results confirmed that a higher ratio of reversible to irreversible traps contributes to increasing HIC severity in steels. Additionally, hydrogen transport through the steels was most prominent along the grain boundaries, indicating the importance of grain boundary character to HIC.  相似文献   

8.
In this work, the hydrogen embrittlement (HE) characteristics of 1400 MPa bolt steels with three different vanadium contents of 0, 0.17 wt% and 0.34 wt% were evaluated. The characteristics of the microstructure and dislocation density of the experimental steels were analyzed, and their effects on HE were also discussed. The results showed that with increasing V content, the HE resistance of the experimental steels was improved, and the experimental steel with the highest V content possessed the best HE resistance. The V-precipitates of steels with V contents of 0.17 wt% and 0.34 wt% were reversible hydrogen traps, and the inhibitory effect of V-precipitates on hydrogen-dislocation interactions improved HE resistance. In addition, a lower dislocation density and finer martensitic structure were also beneficial for hindering hydrogen-induced cracking (HIC).  相似文献   

9.
In this study, the number and size distribution of vanadium precipitates and their effects on hydrogen trapping efficiency and hydrogen-induced cracking (HIC) susceptibility were investigated in X80 pipeline steel. The results showed that as the vanadium content increased, the number of nanoscale vanadium precipitates clearly increased. Furthermore, the amount of hydrogen atoms trapped by vanadium precipitates gradually increased and the hydrogen diffusion coefficient decreased from 4.74 × 10?6 cm2 s?1 in the vanadium-free V0 steel to 8.48 × 10?7 cm2 s?1 in the V4 steel with 0.16% V, according to hydrogen permeation results. It also reduced the possibility of hydrogen atoms diffusing into the sites of harmful defects such as large-size oxides and elongated MnS inclusions, where cracks were caused more easily. In addition, the V3 steel with 0.12% V, containing the largest number of vanadium carbide particles of less than 60 nm, had the lowest HIC susceptibility.  相似文献   

10.
In this research, hydrogen induced cracking (HIC) phenomenon in pipeline steel has been investigated by finite element modeling (FEM) with the help of experimental observations. Abaqus software has been utilized to model the crack. To this, first an API 5L X70 pipeline steel was electrochemically charged by hydrogen for 8 h to create different types of HIC cracks. Then, SEM was used to observe different types of hydrogen cracks. Based on the observations, most of HIC cracks were observed at the center of cross section where center segregation of some elements occurred. The results showed that HIC cracks propagated in stepwise, sinusoidal, straight and disordered manner. Moreover, HIC crack nucleated from a point with high stress concentration factor which was between non-metallic inclusion or void and metal matrix. The initiated micro-cracks from two neighbor inclusions link together to form a long HIC crack. Based on the experimental observations and FEM modeling, it was concluded that the driving force for the HIC crack propagation is the presence of hydrogen at the crack tip after it is initiated. Crack tip usually acts as a very small void and the combination of hydrogen atoms makes a high pressure which propel the crack forward. Moreover, the HIC crack propagation path was predicted by fracture mechanics approach showing that the J-integral had its maximum amount when the HIC crack tended to propagate horizontally.  相似文献   

11.
In this work, the type, composition and distribution of inclusions contained in an API5L X100 steel were characterized by scanning electron microscopy and energy-dispersive x-ray analysis. A hydrogen-charging at various current densities was used to introduce hydrogen into the steel, and the correlation between HIC and the inclusions was established. The microstructure of the steel consists of a leather-like bainitic ferrite matrix, with martensite/austenite as the second phase particles. At least four types of inclusions are contained in API5L X100 steel, elongated MnS inclusions and spherical Al-, Si- and Ca-Al-O-S-enriched inclusions. In particular, the majority of inclusions in the steel are Al-enriched. Upon hydrogen-charging, hydrogen blisters and HIC could be caused in the steel in the absence of external stress. The cracks are primarily associated with the Al- and Si-enriched inclusions, rather than the elongated MnS inclusion. The critical amount of hydrogen resulting in HIC of the tested API5L X100 steel is determined to be 3.24 ppm under condition in this work.  相似文献   

12.
Different heat treatment cycles were designed in order to investigate the effect of microstructural changes on hydrogen induced cracking resistance (HIC) and mechanical properties of the electric resistance welded steel. The heat treating of the as-welded specimen improved the ductility and impact toughness. After heat treatment, the uniform hardness profile was obtained for the welded specimens. The removal of local hard zones reduced the risk of HIC. The chemical composition and clustering of inclusions have a deleterious effect on cracking resistance in the H2S environment. Aluminosilicate compounds and MnS inclusions were favorite sites for HIC. The most promising post weld heat treatment for improving mechanical properties and the resistance to HIC was the application of two-cycle quenching followed by tempering.  相似文献   

13.
The present work aims to investigate the role of hydrogen induced blisters cracking on degradation of tensile and fatigue properties of X65 pipeline steel. Both tensile and fatigue specimens were electrochemically charged with hydrogen at 20 mA/cm2 for a period of 4 h. Hydrogen charging resulted in hydrogen induced cracking (HIC) and blister formation throughout the specimen surface. Nearly all the blisters formed during hydrogen charging showed blister wall cracking (BWC). Inclusions mixed in Al-Si-O were found to be the potential sites for HIC and BWC. Slow strain rate tensile (SSRT) test followed by fractographic analysis confirmed significant hydrogen embrittlement (HE) susceptibility of X65 steel. Short fatigue crack growth framework, on the other hand, specifically highlighted the role of BWC on accelerated crack growth in the investigated material. Coalescence of propagating short fatigue crack with BWC resulted in rapid increase in the crack length and reduced the number of cycles for crack propagation to the equivalent crack length.  相似文献   

14.
Under the tensile loading, the damage of metals in the corrosive medium is the most destructive and harmful. In this study, the stress corrosion cracking behavior of H-charged high-strength steel in 3.5 wt% NaCl solution after electropulsing treatment was investigated. The experimental results from elongation, yield strength, fracture morphology, and polarization curves all demonstrate the positive effect of the pulsed processing, as it reduced the susceptibility of steel to stress corrosion cracking by removing hydrogen by electropulsing. The reduction in hydrogen content of the pulsed high–strength steels was attributed to electromigration and increased system free energy, which drove the hydrogen atoms in the steel to de–trap and reduced the susceptibility to stress corrosion cracking.  相似文献   

15.
Effects of internal hydrogen and surface-absorbed hydrogen on hydrogen embrittlement (HE) of X80 pipeline steel were investigated by using different strain rate tensile test, annealing and hydrogen permeation tests. HE of X80 pipeline steel is affected by internal hydrogen and surface-absorbed hydrogen, and the latter plays a major role due to its higher effective hydrogen concentration. The HE susceptibility decreases with increasing the strain rate because it is more difficult for hydrogen to be captured by dislocations at the high strain rate. Annealing at 200 °C can weakened HE caused by internal hydrogen, while it has little effect on HE caused by surface-absorbed hydrogen. HE of X80 pipeline steel is mainly determined by the behavior of dislocation trapping hydrogen, which can be attributed to the interaction between hydrogen and dislocation.  相似文献   

16.
The tensile properties of several high-strength low-alloy steels in a 45 MPa hydrogen atmosphere at ambient temperature were examined with respect to the effects of grain size and dislocation density on hydrogen environment embrittlement. Grain size was measured using an optical microscope and dislocation density was determined by X-ray diffractometry. Both grain refinement and a reduction in dislocation density are effective in reducing the susceptibility to embrittlement. The steel that has high dislocation density or large grain size inclines to show a smooth intergranular fracture surface. Given only the grain size and dislocation density, a simple approximation of the embrittlement property of high-strength steel could be obtained. This method could be useful in selecting candidate materials in advance of the mechanical tests in high-pressure hydrogen gas.  相似文献   

17.
To support our increasing energy demand, steel pipelines are deployed in transporting oil and natural gas resources for long distances. However, numerous steel structures experience catastrophic failures due to the evolution of hydrogen from their service environments initiated by corrosion reactions and/or cathodic protection. This process results in deleterious effect on the mechanical strength of these ferrous steel structures and their principal components. The major sources of hydrogen in offshore/subsea pipeline installations are moisture as well as molecular water reduction resulting from cathodic protection. Hydrogen induced cracking comes into effect as a synergy of hydrogen concentration and stress level on susceptible steel materials, leading to severe hydrogen embrittlement (HE) scenarios. This usually manifests in the form of induced-crack episodes, e.g., hydrogen induced cracking (HIC), stress-oriented hydrogen induced cracking (SOHIC) and sulfide stress corrosion cracking (SSCC). In this work, we have outlined sources of hydrogen attack as well as their induced failure mechanisms. Several past and recent studies supporting them have also been highlighted in line with understanding of the effect of hydrogen on pipeline steel failure. Different experimental techniques such as Devanathan–Stachurski method, thermal desorption spectrometry, hydrogen microprint technique, electrochemical impedance spectroscopy and electrochemical noise have proven to be useful in investigating hydrogen damage in pipeline steels. This has also necessitated our coverage of relatively comprehensive assessments of the effect of hydrogen on contemporary high-strength pipeline steel processed by thermomechanical controlled rolling. The effect of HE on cleavage planes and/or grain boundaries has prompted in depth crystallographic texture analysis within this work as a very important parameter influencing the corrosion behavior of pipeline steels. More information regarding microstructure and grain boundary interaction effects have been presented as well as the mechanisms of crack interaction with microstructure. Since hydrogen degradation is accompanied by other corrosion-related causes, this review also addresses key corrosion causes affecting offshore pipeline structures fabricated from steel. We have enlisted and extensively discussed several recent corrosion mitigation trials and performance tests in various media at different thermal and pressure conditions.  相似文献   

18.
Alloy hardened steels offer excellent combination of mechanical properties, hardenability and corrosion resistance. 34CrMo4 is a medium carbon, low alloy steel widely used due to a good combination of high-strength, toughness and wear resistance. However, this steel experiences hydrogen embrittlement (HE), a complex phenomenon depending on the composition and microstructure. This work estimates de loss of the mechanical properties caused by hydrogen in electrochemically H-charged specimens in absence of mechanical stress but also, at low strain rate and constant load. H-charging for 2 and 6 h induce YS losses of about 40% and 71% and UTS losses of 39% and 59%, respectively. The synergistic effect of the stress and the H-charging process leads to a higher loss, 91%, and a faster brittle fracture even though hydrogen content is similar to those firstly H-charged and then tested in air.  相似文献   

19.
The role of δ-Fe in hydrogen embrittlement (HE) of 17-4 PH steel is studied in this work. Scanning Kelvin probe force microscopy result indicates that δ-Fe is a hydrogen trapping site. Accordingly, δ-Fe can reduce the hydrogen concentration of surrounding martensite and prior austenite grain boundaries (PAGBs) and imped the brittle fracture along lath boundaries and PAGBs, which can be beneficial to the HE resistance improvement. However, a cleavage fracture of δ-Fe can occur under the synergetic action of hydrogen-enhanced localized plasticity (HELP) and hydrogen enhancement of the strain-induced generation of vacancies (HESIV). These findings indicate a new path to improving HE resistance of high strength martensitic steels.  相似文献   

20.
Quenched and tempered (Q&T) steels are prone to hydrogen induced cracking (HIC) in the heat affected zone after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic (LHF) steel consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. In this investigation an attempt has been made to study the influence of welding consumables and welding processes on hydrogen induced cold cracking of armour grade Q&T steel welds by implant testing. Shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes were used for making welds using ASS and LHF welding consumables. ASS welds made using FCAW process offered a higher resistance to HIC than all other welds considered in this investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号