首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A penalty finite element analysis with bi-quadratic rectangular elements is performed to investigate the influence of uniform and non-uniform heating of wall(s) on natural convection flows in a square cavity. In the present investigation, one vertical wall and the bottom wall are uniformly and non-uniformly heated while the other vertical wall is maintained at constant cold temperature and the top wall is well insulated. Parametric study for a wide range of Rayleigh number (Ra), 103  Ra  106 and Prandtl number (Pr), 0.2  Pr  100 shows consistent performance of the present numerical approach to obtain the solutions as stream functions and temperature profiles. Heat transfer rates at the heated walls are presented in terms of local Nusselt number.  相似文献   

2.
A two-dimensional numerical study has been carried out to investigate the drag and Nusselt number characteristics under forced convection conditions between a streaming power law liquid and a rectangle (with its longer side aligned with the direction of flow) placed symmetrically between two solid walls. In particular, the values of the individual and total drag coefficients, and of the Nusselt number are obtained as functions of the flow behaviour index (1.4  n  0.5), of Reynolds number (5  Re  40) and of the Peclet number (5  Pe  400) for a fixed value of the blockage ratio (1/8). Within these ranges of kinematic and rheological conditions, the drag and Nusselt number show only fair to moderate deviation from the corresponding Newtonian values at the same values of the Reynolds and Peclet numbers. Qualitatively speaking, the shear-thinning behaviour (n < 1) augments the drag and heat transfer while the shear-thickening behaviour (n > 1) causes both the drag and heat transfer to drop below the corresponding Newtonian values. The power-law fluid behaviour does not seem to alter the streamline, isovorticity and isotherm plots in a significant manner, except for the fact that the shear-thinning behaviour not only delays the formation of a visible wake but the resulting wake is also somewhat shorter than that in a Newtonian fluid. The shear thickening, on the other hand, has exactly the opposite influence on wake formation.  相似文献   

3.
The aim of this paper is to investigate the influence of the plate thickness on the fatigue strength of laser stake-welded T-joints under the tension loading condition. Fatigue tests were conducted on specimens with plate thicknesses below 5 mm subjected to tension loading with the load ratio R = 0. The statistical analysis of the weld geometry showed a normal distribution of the each parameter that was measured. In addition, the parameters had similar proportions in comparison to the specimens with plate thicknesses above 5 mm. FE analysis was performed with the aim of determining the stress state in the joint along with the J-integral. If the square root of the J-integral, √ΔJ, is used as the fatigue strength assessment parameter, the fatigue strength obtained at five million cycles is similar as in the case of other steel welded joint types. The investigation concluded that the stress state changes with the reduction of the plate thicknesses and the contribution of fracture mode II becomes significant. However, using √ΔJ as a fatigue strength assessment parameter ensures that the complex state of the mixed fracture mode loading is accurately accounted for. This fact further enables the fatigue strength of laser stake-welded T-joints of any plate thicknesses to be described by means of a narrower scatterband than the one obtained by the nominal stress approach.  相似文献   

4.
The theory of diffusive stresses based on the diffusion-wave equation with time-fractional derivative of fractional order α is formulated. The non-parabolic diffusion equation is a mathematical model of a wide range of important physical phenomena and can be obtained as a consequence of the non-local constitutive equation for the matter flux vector with the long-tale power time-non-local kernel. Because the considered equation in the case 1  α  2 interpolates the parabolic equation (α = 1) and the wave equation (α = 2), the proposed theory interpolates a classical theory of diffusive stresses and that without energy dissipation introduced by Green and Naghdi. The stresses caused by a source of diffusion in an unbounded solid are found in one-dimensional and axially symmetric cases (for plane deformation). Numerical results for the concentration and stress distributions are given and illustrated graphically.  相似文献   

5.
《Optical Materials》2013,35(12):2101-2107
Cerium oxide films, of 0.3–1 μm thickness, were reactively deposited in the oxygen atmosphere onto quartz plates by the PVD method. An electron gun was used as an evaporation source. Films were characterized with the AFM method, Raman spectroscopy and spectrophotometrically. Optical properties of these films were examined for the wavelength range 0.2–2.5 μm. Films were characterized by high transparency, between 0.38 and 2.5 μm. The complex refractive index, n*=n  jk, was evaluated. The dispersion characteristics for n(λ) and k(λ) were presented. We found that the refractive index strongly depends on the temperature of substrates (300 K  Ts  673 K) during film deposition. Estimated values of the refractive index (at λ = 0.55 μm) were in the range 1.91–2.34.  相似文献   

6.
The mechanochemical synthesis of a La0.67Ce0.21Nd0.08Pr0.04Ni5 intermetallic is studied. The intermetallic is synthesised from a mixture of LaNi5 and La0.25Ce0.52Nd0.17Pr0.06Ni5. The processes controlling the mechanical alloying are characterised as a function of integrated milling time (tm). Effects of fracture and cold welding on the sample are identified by scanning electron microscopy. Compositional, microstructural and structural changes are analysed by energy dispersive spectroscopy and X-ray diffraction. The powder obtained has a particle size distribution of 9 ± 1 μm with an average crystallite size of 370 ± 10 Å and strain >10%. The intermetallic compound is annealed in Ar to increase crystallite size and to release strain. The structure is refined by the Rietveld method. Cell parameters are a = 4.982(2) Å and c = 3.980(9) Å, respectively. The advantage of the synthesis method using intermetallics instead of metals/alloys is discussed along with the characteristics of the powder obtained.  相似文献   

7.
Random Laser emission at 1.06 μm, self-second-harmonic generation at 0.53 μm and self-sum-frequency generation at 0.46 μm were investigated in NdxY1.00−xAl3(BO3)4 nanocrystalline powders, for 0.05  x  1.00, excited by a pulsed laser operating at 808 nm, focusing on the interplay between the RL performance and the second-order nonlinear processes. The RL performance, characterized by a figure-of-merit relating the laser slope efficiency and the excitation pulse energy threshold, improved as x increased up to 1.00 while the efficiency of the self-frequency conversion processes reduced for increasing x because of distortions introduced in the crystalline structure of the grains. The RL wavelength was also dependent on the Nd3+ concentration and presented a redshift from 1061.9 nm to 1063.5 nm for increasing values of x.  相似文献   

8.
A new Pr3+ poly vinyl chloride PVC membrane sensor based on a membrane containing 3% N,N′-bis(4-hydroxysalicylidene)-1-3-phenylenediamine (HSPDA) as an ionophore, 2% sodium tetraphenyl borate (NaTPB) as an anionic additive, 65% benzyl acetate (BA) as solvent mediator and 30% poly(vinyl chloride) was prepared. This sensor responds to praseodymium ion in a wide linear dynamic range of 1.0 × 10?6 to 1.0 × 10?2 mol L?1 with Nernstian slope of 19.8 ± 0.4 mV per decade and a detection limit of 5.7 × 10?7 mol L? 1 in pH range of 3.1 to 9.8. It has a fast response time of ~5 s in the whole concentration range, and can be used for at least 2 months without any considerable divergences in the potentials. The proposed sensor displays an excellent selectivity for Pr3+ ions with respect to a large number of alkali, alkaline earth, transition and heavy metal ions. The developed sensor was successfully applied as an indicator electrode in Pr3+ ion potentiometric titration with EDTA, and in direct determination of fluoride ion in two mouth wash samples.  相似文献   

9.
《Advanced Powder Technology》2014,25(5):1415-1429
Ferroelectrics materials have been tremendously attractive since the 40 s with the discovery of ferroelectricity in metal oxide perovskite materials and more precisely in barium titanate. Due to their high potential for industrial applications, intensive research has been carried out to better understand their behavior and develop processes to produce them. Trying to face the down scaling demand of high quality particles towards the nanometer range, some conventional methods such as the solid state one reach their limits. The development of other processes are thus required and the synthesis in supercritical fluids can be considered as a promising alternative. This technology exhibits very interesting characteristics such as fast continuous synthesis (few seconds) of high quality nanoparticles (well crystallized nanoparticles with narrow size distribution) with controlled composition (Ba1xSrxTiO3 with 0  x  1) at intermediate synthesis temperatures (<400 °C) with the use of non-toxic solvents (water, ethanol). Reaching the nanometer size range, the intrinsic properties of ferroelectric materials change compared to the bulk. Consequently a deep study concerning the crystalline structure, the presence of defects and the surface chemistry of those nanoparticles has to be achieved to control their properties for further use in functional devices.  相似文献   

10.
Natural convection laminar boundary layer flow from a horizontal circular cylinder with a uniform surface temperature at presence of heat generation has been investigated. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are solved numerically applying two distinct methods namely (i) implicit finite difference method together with the Keller box scheme and (ii) series solution technique. The results of the surface shear stress in terms of the local skin friction and the surface rate of heat transfer in terms of the local Nusselt number for a selection of the heat generation parameter γ (= 0.0, 0.2, 0.5, 0.8, 1.0) are obtained and presented in both tabular and graphical formats. Without effect of the internal heat generation inside the fluid domain for which we take γ = 0.0, the present numerical results show an excellent agreement with those of Merkin [J.H. Merkin, Free convection boundary layer on an isothermal horizontal circular cylinders, in: ASME/AIChE, Heat Transfer Conference, St. Louis, MO, August 9–11, 1976]. The effects of γ on the fluid velocity, temperature distribution, streamlines and isotherms are examined.  相似文献   

11.
Air permeable concrete (APC) is potentially useful as a dynamic insulator. The dynamic function is achieved by passing air through the material in the direction of heat flow to facilitate heat recovery. An APC sample of 200 mm length with 60% cement filling of large voids (between 0.5 and 5 mm), was tested between 5 and 10 Pa differential pressures; permeabilities were 0.28–0.32 m2/Pa h, confirming its suitability as a dynamic insulator. To characterise properties it is necessary to determine the static thermal conductivity, i.e., no air flow. A one-dimensional heat flow model for predicting the effective thermal conductivity (λe) of APC is developed using as variables the fractions of voids, aggregate and cement paste comprising the material. Measured values of λe were 0.7–1.4 W/m K. A theoretical model predicts and further improves the performance and formulation of APC. The water/cement ratio (w/c) also controls the λe. Increasing w/c increases the volume of micropores, adding resistance to heat flow.  相似文献   

12.
Ferrite nanoparticles were introduced into poly(ethylene terephthalate) (PET) in a melt state at 270 °C upto 20 wt%, and the thermal and rheological properties of the nanocomposites were investigated. The introduction of ferrite nanoparticles increased a little the crystallization temperature (Tc) of PET by ca. 3 °C, while it had little effect on the melting temperature (Tm). In addition, it increased both heat of crystallization (ΔHc) and heat of fusion (ΔHm) with ferrite content. PET nanocomposites with ferrite 5 wt% and above exhibited an increased thermal stability and a two-stage degradation. The dynamic viscosity of PET nanocomposites was increased with ferrite content. However, ferrite loading of 5 wt% and above produced a high degree of shear thinning leading to even lower viscosity in a high frequency range than that of pure PET. The nanocomposites gave a non-zero positive value of yield stress, which was notably increased particularly from 5 wt% loading. In the Cole–Cole plot, at contents 1 wt% and above, ferrite nanoparticles caused the deviation from the master curve and a reduced slope. In addition, the relaxation time was increased with ferrite content and an increasing degree was more notable at a lower frequency.  相似文献   

13.
Ceramic samples of [Na0.5K0.5]1 ? x(Li)x(Sb)x(Nb)1 ? xO3 (NKNLS) (x = 0.04–0.06) were prepared by high temperature solid-state reaction method. X-ray diffraction analysis of the powder samples suggests the formation of a single-phase material with transformation from orthorhombic to tetragonal crystal structure with increase in Sb content. Dielectric studies show a diffuse phase transition about 100 °C and another phase ferroelectric–paraelectric transition at 330 °C. Polarization vs. electric field (PE) hysteresis studies show maximum remanent polarization (Pr  0.66 C m?2) for composition x = 0.05. AC conductivity in the compound increases with increase in temperature which may be attributed due to oxygen vacancies and show negative temperature coefficient of resistance (NTCR) effect.  相似文献   

14.
Pr0.57Ca0.43MnO3 nanoparticles with an average particle size of ∼20 nm have been synthesized using hydrothermal method in combination with post-annealing, and characterized using X-ray diffraction, X-ray photoelectron spectrometer, high-resolution transmission electron microscopy and superconducting quantum interference device magnetometery. The results show that the hydrothermal synthesis of Pr1−xCaxMnO3 compound below 240 °C is difficult. The Pr0.57Ca0.43MnO3 nanoparticles obtained by annealing the hydrothermal products at 900 °C for 2 h present an orthorhombic perovskite structure with the same lattice as bulk Pr0.6Sr0.4MnO3. Magnetic characterization reveals that the low-temperature antiferromagnetic and charge ordering transitions identified in bulk Pr0.57Ca0.43MnO3 are completely suppressed in the nanoparticles, while a ferromagnetic transition occurs at ∼110 K. The spin-freezing behavior at low temperature for the Pr0.57Ca0.43MnO3 nanoparticles is demonstrated.  相似文献   

15.
Based on analyses for the electromagnetic pressure on the melt and the heat induced in the melt, the ratio of heat to pressure Q0/Pm is defined, to give the relationship between Q0/Pm and the thickness a, the electromagnetic parameter (μγ) of the melt and the electric current frequency f under the electromagnetic confinement and shaping process. If Q0/Pm is large, any adjustment to the melt shape will easily cause a variation of the temperature in the melt. In this situation, there appears to be a more sensitive interaction between the shape and the temperature field and a more narrow adjustment range for the process. Experiments on thin plate samples with a cross-section of 6 mm×18 mm are done with two kinds of induction coils. The results show that when a coil with a trumpet inside wall is used and the positions of the melt top and the S/L interface are properly selected, the melt periphery is nearly vertical and the temperature gradient ahead of the S/L interface is high. Under these conditions, a more stable and wider coupling between the shape and the temperature field is continuously maintained and samples with a smooth surface and unidirectional crystals are successfully obtained.  相似文献   

16.
In the present study, compression tests were performed at temperatures of 600–900 °C and at strain rates of 0.001–0.1 s−1 to study the deformation and workability characteristics of commercially pure titanium after severe plastic deformation (SPD). It was found that the effects of temperature and strain rate are significant in dictating the steady state flow stress levels and the strain values corresponding to peak flow stress. The strain rate sensitivity (m) during hot compression of severely deformed Ti was shown to be strongly temperature dependent, where m increased with the increase in deformation temperature up to 800 °C. High temperature workability was analyzed based on the flow localization parameter (FLP). According to the FLP values, deformation at and below 700 °C is prone to flow localization. The flow behavior was predicted using Arrhenius type and dislocation density based models. The validities of the models were demonstrated with reasonable agreement in comparison to the experimental stress–strain responses.  相似文献   

17.
Hydrogen is the simplest bipolar element and its valence state can be controlled from +1 to −1. We synthesized the 1111-type iron arsenides CaFeAsH and LnFeAsO1−xHx (Ln = lanthanide; 0  x  0.5) with the ZrCuSiAs type structure by a high-pressure synthesis method. The position and valence state of the substituted H were determined by neutron diffraction and density functional theory calculations. The close similarity in the structural and electrical properties of CaFeAsH and CaFeAsF indicated the formation of the hydride ion (H), which is isovalent with the fluoride ion (F), in the 1111-type iron arsenides. When some of the O2− ions in LnFeAsO are replaced by H, superconductivity is induced by electron doping to the FeAs-layer to maintain charge neutrality. Since the substitution limit of hydrogen in LnFeAsO (x  0.5) is much higher than that of fluorine (x  0.2), the hydrogen substitution technique provides an effective pathway for high-density electron-doping, making it possible to draw the complete electronic phase diagram of LnFeAsO. The x–T diagrams of LnFeAsO1−xHx (Ln = La, Ce, Sm, Gd) have a wide superconducting (SC) region spanning the range x = 0.04–0.4, which is far from the parent antiferromagnetic region near x = 0.0. For LaFeAsO1−xHx, another SC dome region was found in the range x = ∼0.2 to ∼0.5 with a maximum Tc = 36 K, in addition to a conventional SC dome located at x  0.08 with maximum Tc = 29 K. Density functional theory calculations performed for LaFeAsO1−xHx indicated that the newly observed Tc is correlated with the appearance of degeneration of the Fe 3d bands (dxy, dyz and dzx), which is caused not only by regularization of the tetrahedral shape of FeAs4 due to chemical pressure effects but also by selective band occupation with doped electrons. In this article, we review the recent progress of superconductivity in 1111-type iron (oxy)arsenides and related compounds induced by hydrogen anion substitution.  相似文献   

18.
Alkaline aluminum phosphate glasses (NMAP) with excellent chemical durability for thermal ion-exchanged optical waveguide have been designed and investigated. The transition temperature Tg (470 °C) is higher than the ion-exchange temperature (390 °C), which is favorable to sustain the stability of the glass structure for planar waveguide fabrication. The effective diffusion coefficient De of K+–Na+ ion exchange in NMAP glasses is 0.110 μm2/min, indicating that ion exchange can be achieved efficiently in the optical glasses. Single-mode channel waveguide has been fabricated on Er3+/Yb3+ doped NMAP glass substrate by standard micro-fabrication and K+–Na+ ion exchange. The mode field diameter is 9.6 μm in the horizontal direction and 6.0 μm in the vertical direction, respectively, indicating an excellent overlap with a standard single-mode fiber. Judd–Ofelt intensity parameter Ω2 is 5.47 × 10−20 cm2, implying a strong asymmetrical and covalent environment around Er3+ in the optical glasses. The full width at half maximum and maximum stimulated emission cross section of the 4I13/2  4I15/2 are 30 nm and 6.80 × 10−21 cm2, respectively, demonstrating that the phosphate glasses are potential glass candidates in developing compact optoelectronic devices. Pr3+, Tm3+ and Ho3+ doped NMAP glasses are promising candidates to fabricate waveguide amplifiers and lasers operating at special telecommunication windows.  相似文献   

19.
Eu3+ ions incorporated Li–K–Zn fluorotellurite glasses, (70  x)TeO2 + 10Li2O + 10K2O + 10ZnF2 + xEu2O3, (0  x  2 mol%) were prepared via melt quenching technique. Optical absorption from 7F0 and 7F1 levels of the Eu3+-doped glass has been studied to examine the covalent bonding characteristics, energy band gap and Judd–Ofelt intensity parameters. The emission spectra (5D0  7F0,1,2,3,4) of the glasses were used to estimate the luminescence enhancement, asymmetric environment in the vicinity of Eu3+ ions, stimulated emission cross section and branching ratios. The phonon side band mechanism of 5D2 level of the Eu3+ ions in the prepared glass was examined by considering the excitation and Raman spectra. The radiative lifetime calculated using Judd–Ofelt parameters was compared with the experimental lifetime to estimate the quantum efficiency of 5D0 level of Eu3+ ions in Li–K–Zn fluorotellurite glass.  相似文献   

20.
Ti-based bulk metallic glass (BMGs) and their bimodal composites are linked with the pronounced strain hardening after yielding but with much low value of strength. Therefore, developing Ti-based alloys with high yield strength and high plasticity is the current challenge. Here, we report the synthesis of ultra-fine grained bulk (UFG) (Ti0.705Fe0.295)100−xGax (0  x  2) bimodal eutectic composites with not only high strength and larger plasticity but also with high yield strength which is one of the important mechanical property for structural application. Reasonably high strength, high yield strength, strain to failure ratio, and enhanced plasticity of ∼7 ± 0.8% was observed in (Ti70.5Fe29.5)98Ga2 composite which is superior than Ti-based BMGs and bimodal composites. Modification of degree of eutectic structure refinement and volume fraction of constituent phases with the addition of Ga are the crucial factors in enhancing the mechanical properties of Ti–Fi–(Ga) composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号