首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The electronic properties of a sandwich graphene(N)–Sc–graphene(N) structure and its average adsorption energies after the adsorption of 1, 3, 5, 7, 10, and 14H2 molecules were investigated by first principles. The average binding energies and adsorption distances of Sc atoms at different adsorption sites in N-doped bilayer graphene (N–BLG) were calculated. It was found that Sc atoms located at different adsorption sites of BLG generated metal clusters. The binding energy of the Sc atom located at the TT position of N–BLG (5.19 eV) was higher than the experimental cohesion energy (3.90 eV), and eliminated the impact of metal clusters on adsorption properties. It was found that the G(N)–Sc–G(N) system could stably adsorb 10 hydrogen molecules with an average adsorption energy of 0.24 eV. Therefore, it can be speculated that G(N)–Sc–G(N) is an excellent hydrogen storage material.  相似文献   

2.
The 1–6 H2 molecule adsorption energy and electronic properties of sandwich graphene–Pd(T)–Graphene (G–Pd(T)–G) structure were studied by the first-principle analysis. The binding energies, adsorption energies, and adsorption distances of Pd atoms-modified single-layer graphene and bilayer graphene with H2 molecules at B, H, T adsorption sites were calculated. In bilayer graphene, the adsorption properties at T sites were found to be more stable than those at B and H sites. The binding energy of Pd atoms (4.16 eV) on bilayer graphene was higher than the experimental cohesion energy of Pd atoms (3.89 eV), and this phenomenon eliminated the impact of metal clusters on adsorption properties. It was found that three H2 molecules were stably adsorbed on the G–Pd(T)–G structure with an average adsorption energy of 0.22 eV. Therefore, it can be speculated that G–Pd(T)–G is an excellent hydrogen storage material.  相似文献   

3.
As a candidate for hydrogen storage medium, Li decorated graphene with experimentally realizable nitrogen defects was investigated for geometric stability and hydrogen capacity using density functional theory (DFT) calculations. Among the three types of defective structures, it is expected that Li metal atoms are well dispersed on the graphene sheets with pyridinic and pyrrolic defects without clustering as the bond strength of Li on pyridinic and pyrrolic N-doped graphene layers is higher than the cohesive energy of the Li metal bulk. The two stable structures were found to exhibit hydrogen uptake ability up to three H2 per Li atom. The binding energies of the hydrogen molecules for these structures were in the range of 0.12–0.20 eV/H2. These results demonstrate that a Li/N-doped graphene system could be used as a hydrogen storage material.  相似文献   

4.
By using first-principles methods, we perform a theoretical investigation of adsorption of hydrogen molecules between bilayer solid matrix layers (bilayer boron nitride sheets (BBN) and graphene/boron nitride heterobilayers (GBN)) with variable interlayer distance (ILD). We find that the H2 adsorption energy has a minimum by expanding the interlayer spacing, along with further interlayer expansion, arising from many H2 binding states and electrostatic interaction induced by the polar nature of B–N bonds. To determine if successive addition of H2 molecules is indeed possible using the minimal H2 adsorption energy as the reference state, we then simulate the hydrogen storage capacity of BBN and GBN with different stacking types, and find that the GBN with Bernal stacking is superior for reversible hydrogen storage. Up to eight H2 molecules can be adsorbed with the average adsorption energy of −0.20 eV/H2, corresponding to ∼7.69 wt % hydrogen uptake.  相似文献   

5.
Two-dimensional (2D) carbon-based (C-based) and carbon-nitrogen (C–N) materials have great potential in the energy harvest and storage fields. We investigate a novel carbon biphenylene (C468) consisting of four-, six- and eight-membered rings of sp2 carbon atoms (Fan et al., Science, 372:852-6 (2021)) for hydrogen storage. Using first-principles based Density functional theory calculations, we study the geometrical and electronic properties of C468 and N-doped C468. Lithium (Li) atoms were symmetrically adsorbed on both sides of the substrate, and their adsorption positions were determined. The maximum gravimetric density of hydrogen (H2) adsorbed symmetrically on both sides of Li atom was studied within the scope of physical adsorption process (−0.2 eV/H2 ∼ −0.6 eV/H2). Li-decorated C468 can adsorb 8 upper hydrogen molecules and 8 lower hydrogen molecules, and Li-decorated N-doped C468 can adsorb 9 upper hydrogen molecules and 9 lower hydrogen molecules. The gravimetric densities of Li-decorated C468 and Li-decorated N-doped C468 can reach 9.581 wt% and 10.588 wt%, respectively. Our findings suggest significant insights for using Li-decorated C468 and Li-decorated N-doped C468 as hydrogen storage candidates and effectively expand the application scope of C-based materials and C–N materials.  相似文献   

6.
Using the idea of metal functionalized material for H2 storage, 4-tert-butylcalix[4]arene (CA) functionalized with Sc and Ti atoms are explored. The first principles density functional theory (DFT) with M06 functional and 6-311G(d,p) basis set is used to explore the hydrogen storage properties of metal functionalized CA. Sc and Ti strongly binds with CA by Dewar coordination with high binding energy. It is found that maximum four hydrogen molecules are adsorbed on each metal site in Sc and Ti functionalized CA. Hydrogen molecules are adsorbed on metals by Kubas and Niu-Rao-Jena mechanism. In Sc functionalized CA system all 4 hydrogen molecules on each Sc bind in molecular fashion while on each Ti in Ti functionalized CA, the first hydrogen molecule binds in dissociative fashion and remaining three hydrogen molecules bind in a molecular form. The stability of Sc and Ti functionalized CA is studied by computing conceptual DFT parameters, which obeys maximum hardness and minimum electrophilicity principle. Hirshfeld charge analysis and electrostatic potential map explore the charge transfer mechanism during the hydrogen adsorption. Born-Oppenheimer molecular dynamics simulations are performed at temperature range 200–473 K to study the stability of the system and the reversibility of adsorbed hydrogen from the system. The calculated H wt% is found to be 10.3 and 10.1, respectively for Sc and Ti functionalized CA systems on complete H2 saturation. This study explores that Sc and Ti functionalized CA systems are efficient reversible hydrogen storage material.  相似文献   

7.
Hydrogen storage properties of Li-decorated graphene oxides containing epoxy and hydroxyl groups are studied by using density functional theory. The Li atoms form Li4O/Li3OH clusters and are anchored strongly on the graphene surface with binding energies of −3.20 and −2.84 eV. The clusters transfer electrons to the graphene substrate, and the Li atoms exist as Li+ cations with strong adsorption ability for H2 molecules. Each Li atom can adsorb at least 2H2 molecules with adsorption energies greater than −0.20 eV/H2. The hydrogen storage properties of Li-decorated graphene at different oxidation degrees are studied. The computations show that the adsorption energy of H2 is −0.22 eV/H2 and the hydrogen storage capacity is 6.04 wt% at the oxidation ratio O/C = 1/16. When the O/C ratio is 1:8, the storage capacity reaches 10.26 wt% and the adsorption energy is −0.15 eV/H2. These results suggest that reversible hydrogen storage with high recycling capacities at ambient temperature can be realized through light-metal decoration on reduced graphene oxides.  相似文献   

8.
The hydrogen adsorption capacity of dual-Ti-doped (7, 7) single-walled carbon nanotube (Ti-SWCNTs) has been studied by the first principles calculations. Ti atoms show different characters at different locations due to local doping environment and patterns. The dual-Ti-doped SWCNTs can stably adsorb up to six H2 molecules through Kubas interaction at the Ti2 active center. The intrinsic curvature and the different doping pattern of Ti-SWCNTs induce charge discrepancy between these two Ti atoms, and result in different hydrogen adsorption capacity. Particularly, eight H2 molecules can be adsorbed on both sides of the dual-Ti decorated SWCNT with ideal adsorption energy of 0.198 eV/H2, and the physisorption H2 on the inside Ti atom has desirable adsorption energy of 0.107 eV/H2, ideal for efficient reversible storage of hydrogen. The synergistic effect of Ti atoms with different doping patterns enhances the hydrogen adsorption capacity 4.5H2s/Ti of the Ti-doped SWCNT (VIII), and this awaits experimental trial.  相似文献   

9.
Lithium decoration is an effective strategy for improving the hydrogen adsorption binding energy and the storage capacity in carbon nanostructures. Here, it is shown that Li-decorated double carbon vacancy graphene (DVG) can be used as an efficient hydrogen storage medium by means of Density Functional Theory (DFT) based calculations. The Li binding energy in DVG is 4.04 eV, which is much higher than that of pristine graphene. A maximum of four hydrogen molecules adsorb on Li decorated on one side of DVG and this leads to a gravimetric storage capacity of 3.89 wt% with an average adsorption binding energy of 0.23 eV/H2. When Li is decorated on both sides of DVG, the gravimetric storage capacity reaches 7.26 wt% with a binding energy of 0.26 eV/H2 which shows that desorption would take place at ambient conditions.  相似文献   

10.
We propose a system that has the potential to be a good candidate for hydrogen storage, in which multiple hydrogen molecules can be adsorbed in the ground state around an impurity in graphene at a certain optimal ILD (interlayer distance). Our first-principles calculations predict that this complex, Ti atoms embedded in double-vacancy graphene (Ti@DV), can hold up to eight H2 per unit. The hydrogen molecules are not dissociated and are all stored in molecular form, so adsorption and desorption of hydrogen should be feasible. Furthermore, this type of structure is stable throughout the charging and discharging process. The density of states (DOS) of this hydrogen storage medium indicates little charge transfer between H2 and Ti@DV graphene.  相似文献   

11.
We performed ab initio density-functional calculations to investigate the structural, electronic and magnetic properties of nanostructures comprising single-adatoms of Sc, Ti or V adsorbed on a hydrogen-passivated zigzag graphene nanoribbon (GNR). We also investigated the affinity of the resulting doped nanostructures for molecular hydrogen. In all cases, the most stable structures featured the adatom at positions near one of the edges of the GNR. However, whereas in the most stable structures of the systems Sc/GNR and V/GNR the adatom was located above a bay of the zigzag edge, Ti/GNR was found to be most stable when the adatom was at a first-row hole site. Adsorption at sites near one of the ribbon edges reduced drastically the average magnetic moment of the carbon atoms at that edge. On the other hand, the magnetic moments of the adatoms on the GNR, as the electronic character of the doped nanostructures, depended on the adsorption site and on the adatom species, but their absolute values were in all cases, except when Sc was at an edge bay site, greater than those of the corresponding free atoms. Our results showed that, of the three systems investigated in this paper, Ti/GNR (except when Ti is adsorbed at an edge bay site) and V/GNR appear to satisfy the criterion specified by the U. S. Department of Energy for efficient H2 storage, as far as binding energy is concerned. We discussed in detail the differences between the adsorption of H2 on the system Ti/GNR and the adsorption of H2 on Ti-adsorbed carbon nanotubes, which have been proposed as a high-capacity hydrogen storage media.  相似文献   

12.
In this work, we report on the study of the hydrogen storage capability of titanium (Ti) decorated B36 nanosheets using density functional theory (DFT) calculations with van der Waals corrections. Ti atoms are strongly bonded to the surface of B36 with a binding energy of 6.23 eV, which exceeds the bulk cohesive energy of crystalline Ti. Ti-decorated B36 (2Ti@B36) can reversibly adsorb up to 12 H2 molecules with a hydrogen storage capacity of 4.75 wt % and average adsorption energy between 0.361 and 0.674 eV/H2. The values of desorption temperature and the results of molecular dynamics simulations enable to conclude that 2Ti@B36 is a perspective reversible material for hydrogen storage under real conditions.  相似文献   

13.
This paper investigates the decoration of superalkali NLi4 on graphene and the hydrogen storage properties by using first principles calculations. The results show that the NLi4 units can be stably anchored on graphene while the Li atoms are strongly bound together in the superalkali clusters. Decoration using the superalkali clusters not only solve the aggregation of metal atoms, it also provide more adsorption sites for hydrogen. Each NLi4 unit can adsorb up to 10 H2 molecules, and the NLi4 decorated graphene can reach a hydrogen storage capacity 10.75 wt% with an average adsorption energy ?0.21 eV/H2. We also compute the zero-point energies and the entropy change upon adsorption based on the harmonic frequencies. After considering the entropy effect, the adsorption strengths fall in the ideal window for reversible hydrogen storage at ambient temperatures. So NLi4 decorated graphene can be promising hydrogen storage material with high reversible storage capacities.  相似文献   

14.
This study uses first-principles calculations to investigate and compare the hydrogen storage properties of Ti doped benzene (C6H6Ti) and Ti doped borazine (B3N3H6Ti) complexes. C6H6Ti and B3N3H6Ti complex each can adsorb four H2 molecules, but the former has a 0.11 wt% higher H2 uptake capacity than the latter. Ti atoms bind to C6H6 more strongly than B3N3H6. The hydrogen adsorption energies with Gibbs free energy correction for C6H6Ti and B3N3H6Ti complexes are 0.17 and 0.45 eV, respectively, indicating reversible hydrogen adsorption. The hydrogen adsorption properties of C6H6Ti have also been studied after boron (B) and nitrogen (N) atom substitutions. Several B and N substituted structures between C6H6Ti and B3N3H6Ti with different boron and nitrogen concentration and at different positions were considered. Initially, one boron and one nitrogen atom is substituted for two carbon atoms of benzene at three different positions and three different structures are obtained. Seven structures are possible when four carbon atoms of benzene are replaced by two boron and two nitrogen atoms at different positions. The hydrogen storage capacity of the C6H6Ti complex increases as boron and nitrogen atom concentrations increases. The positions of substituted boron and nitrogen atoms have less impact on H2 uptake capacity for the same B and N concentration. The position and concentration of B and N affects the H2 adsorption energy as well as the temperature and pressure range for thermodynamically favorable H2 adsorption. The H2 desorption temperature for all the complexes is found to be higher than 250 K indicates the stronger binding of H2 molecules with these complexes.  相似文献   

15.
In this study, we studied defect-engineering and lithium decoration of 2D phosphorene for effective hydrogen storage using density functional theory. Contrary to graphene, it is found that the presence of point-defects is not preferable for anchoring of H2 molecules over defective phosphorene. According to previous research, strategies such as defect engineering, metal decoration, and doping enhance the hydrogen storage capacity of several 2D materials. Our DFT simulations show that point defects in phosphorene do not improve the hydrogen storage capacity compared to pristine phosphorene. However, selective lithium decoration over the defective site significantly improves the hydrogen adsorption capacity yielding a binding energy of as high as ?0.48 eV/H2 in Li-decorated single vacancy phosphorene. Differential charge densities and projected density of states have been computed to understand the interactions and charge transfer among the constituent atoms. Strong polarization of the H2 molecule is evidenced by the charge accumulation and depletion. The PDOS shows that the presence of Li leads to enhanced charge transfer. The maximum gravimetric density was investigated by sequentially adding H2 molecules to the Li-decorated single vacancy defective phosphorene. The Li-decorated single vacancy phosphorene is found to possess a gravimetric density of around 5.3% for hydrogen storage.  相似文献   

16.
In the present study we report the hydrogen adsorption behavior of two SiC nanostructures; a planar sheet and a nanotube (10, 0) of 1 nm diameter decorated by Ti atoms on it. All calculations have been performed using a plane-wave based pseudopotential method. The lowest energy structure of the Ti adsorbed SiC sheet shows that Ti atom distorts the sheet in such a way that one of the Si atoms goes down the plane and the Ti atom bind with nearest three C atoms. The interaction of this Ti decorated sheet with hydrogen suggests that each Ti atom can bind up to four hydrogen molecules (all hydrogens are adsorbed in the molecular form) with an average binding energy of 0.37 eV. For SiC nanotube, the adsorption of Ti favors the hexagonal hollow site. Moreover, on interaction of this Ti decorated tube with hydrogen leads to dissociation of the first hydrogen molecule in the atomic form and thereafter adsorbs hydrogen in the molecular form. The average binding energy of hydrogen molecules on this Ti decorated tube is estimated to be 0.65 eV. Based on these results we infer that the Ti decorated SiC nanostructures moderately bind with hydrogen molecules (within the energy window for hydrogen storage materials) and therefore, can be considered as one of the potential hydrogen storage material.  相似文献   

17.
In this work, the hydrogen storage capacities of two-dimensional siligene (2D-SiGe) functionalized with alkali metal (AM) and alkali-earth metal (AEM) atoms were studied using density functional theory calculations. One AM (Li, Na, K) or AEM (Be, Mg, Ca) atom was placed on the 2D-SiGe surface, and several H2 molecules were placed in the vicinity of the adatom. The results demonstrate that the most favorable siligene site for the adsorption of Li, Na, K and Be atoms is the hollow site, while for the Mg and Ca atoms is the down site. The AM atoms are the only ones with considerable binding energies on the SiGe nanosheets. Pristine 2D-SiGe slightly adsorbs one H2 molecule per hollow site and, therefore, it is not suitable for hydrogen storage. In some of the AM- and AEM-decorated 2D-SiGe, several hydrogen molecules can be physisorbed. In particular, the Na-, K- and Ca-functionalized 2D-SiGe can adsorb six hydrogen molecules, whereas Li and Mg atoms adsorbed three hydrogen molecules, and the Be adatom only adsorbed one hydrogen molecule. The complexes formed by hydrogen molecules adsorbed on the analyzed metal decorated 2D-SiGe are energetically stable, indicating that functionalized 2D-SiGe could be an efficient molecular hydrogen storage media.  相似文献   

18.
The mechanism of hydrogen molecule adsorption on 2D buckled bismuthene (b-Bi) monolayer decorated with alkali metal atoms was studied using density functional theory based first principles calculations. The decorated atoms Li, Na and K exhibited distribution on surface of b-Bi monolayer with increasing binding energy of 2.6 eV, 2.9 eV and 3.6 eV respectively. The adsorption of H2 molecule on the slabs appeared stable which was further improved upon inclusion of van der Waals interactions. The adsorption behaviour of H2 molecules on the decorated slabs is physisorption whereas the slabs were able to bind up to five H2 molecules. The average adsorption energy per H2 molecules are in range of 0.1–0.2 eV which is good for practical applications. The molecular dynamics simulation also confirmed the thermodynamic stabilities of five H2 molecules adsorbed on the decorated slabs. The storage capacity values are found 2.24 wt %, 2.1 wt %, and 2 wt %, for respective cases of Li, Na and K atoms decorated b-Bi. The analysis of the adsorbed cases pointed to electrostatic interaction of Li and H2 molecule. The adsorption energies, binding energies, charge analysis, structural stability, density of states, and hydrogen adsorption percentage specifies that the decorated b-Bi may serve as an efficient hydrogen storage material and could be an effective medium to interact with hydrogen molecules at room temperature.  相似文献   

19.
In virtue of the first-principle calculations, the hydrogen storage behavior in several metal decorated graphyne was investigated. It is found that the hydrogen storage capacity can be as large as 18.6, 10.5, 9.9 and 9.5 wt% with average adsorption energy of about −0.27, −0.36, −0.76 and −0.70 eV/H2 for Li, Ca, Sc, Ti decorated graphyne, respectively. The results suggest potential candidates for hydrogen storage at ambient condition. The adsorption mechanism for H2 on metal coated graphyne was mainly attributed to the polarization induced by electrostatic field of metal atoms on graphyne and the hybridization between the metal atoms and hydrogen molecules. Furthermore, the formation of super-molecules of hydrogen can enhance the adsorption energy.  相似文献   

20.
The hydrogen storage capacity of Ti-acetylene (C2H2Ti) and Li-acetylene (C2H2Li) complex has been tested using second order Møller Plesset method with different basis sets. Single Ti(Li) decorated acetylene complex can adsorb maximum of five(four) hydrogen molecules, which corresponds to the gravimetric hydrogen storage capacity of 12(19.65) wt % and it meets the target of 9 wt % by 2015 specified by US Department of Energy. The hydrogen adsorption energies with zero point energy and Gibbs free energy correction show that hydrogen adsorption on C2H2Ti is energetically favourable for a wide range of temperature and that is unfavourable on C2H2Li complex even at a very low temperature. Atom centered density matrix propagation molecular dynamics simulations reveal that four H2 molecules remain adsorbed on C2H2Ti complex at 300 K. Though H2 uptake capacity of C2H2Li complex is higher than that of C2H2Ti complex, the thermochemistry results favour to C2H2Ti complex over C2H2Li complex as a possible hydrogen storage media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号