首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Catalytic steam hydrogasification of coal is a direct method for methane production. Calcium looping concept is usually used in coal gasification process for in-situ carbon dioxide removal and heat supply. In this paper, a new process combining catalytic steam hydrogasification and calcium looping was proposed and investigated using a self designed instantaneously feeding reactor under high-temperature and pressurized conditions. The effects of operation conditions (including hydrogen concentration with a range of 0–50 vol%, gasification pressure with a range of 0.1–3.5 MPa, gasification temperature with a range of 700–800 °C, and gasification-calcination cycle number up to six) on the performance of the new process have been studied. The results show that: (i) increasing H2 concentration is beneficial to methane products; (ii) high temperature and low pressure are not conducive to methane production and carbon dioxide capture as well as the self-sustained heat supply in gasifier; (iii) the methane content and carbon conversion can be maintained at 30–40 vol% and 75–80% for the durability tests. According to the performance of gas products, 750 °C 3.5 MPa and Ca/C = 0.5 are suggested for the new process. In addition, the gasification reactivity can be affected by the Ca–K-Char interaction as indicated by the XRD, FT-IR and SEM-EDX analysis.  相似文献   

2.
Biogas is a renewable biofuel that contains a lot of CH4 and CO2. Biogas can be used to produce heat and electric power while reducing CH4, one of greenhouse gas emissions. As a result, it has been getting increasing academic attention. There are some application ways of biogas; biogas can produce hydrogen to feed a fuel cell by reforming process. Urea is also a hydrogen carrier and could produce hydrogen by steam reforming. This study then employes steam reforming of biogas and compares hydrogen-rich syngas production and carbon dioxide with various methane concentrations using steam and aqueous urea solution (AUS) by Thermodynamic analysis. The results show that the utilization of AUS as a replacement for steam enriches the production of H2 and CO and has a slight CO2 rise compared with pure biogas steam reforming at a temperature higher than 800 °C. However, CO2 formation is less than the initial CO2 in biogas. At the reaction temperature of 700 °C, carbon formation does not occur in the reforming process for steam/biogas ratios higher than 2. These conditions led to the highest H2, CO production, and reforming efficiency (about 125%). The results can be used as operation data for systems that combine biogas reforming and applied to solid oxide fuel cell (SOFC), which usually operates between 700 °C to 900 °C to generate electric power in the future.  相似文献   

3.
Small-scale steam methane reforming units produce more than 12% of all the CO2-equivalent emissions from hydrogen production and, unlike large-scale units, are usually not integrated with other processes. In this article, the authors examine the hitherto under-explored potential to utilise the excess heat available in the small-scale steam methane reforming process for partial carbon dioxide capture. Reforming temperature has been identified as a critical operating parameter to affect the amount of excess heat available in the steam methane reforming process. Calculations suggest that reforming the natural gas at 850 °C, rather than 750 °C, increases the amount of excess heat available by about 28.4% (at 180 °C) while, sacrificing about 1.62% and 1.09% in the thermal and exergetic efficiency of the process, respectively. Preliminary calculations suggest that this heat could potentially be utilised for partial carbon capture from reformer flue gas, via structured adsorbents, in a compact capture unit. The reforming temperature can be adjusted in order to regulate the amount of excess heat, and thus the carbon capture rate.  相似文献   

4.
The paper aims to investigate the steam reforming of biogas in an industrial-scale reformer for hydrogen production. A non-isothermal one dimensional reactor model has been constituted by using mass, momentum and energy balances. The model equations have been solved using MATLAB software. The developed model has been validated with the available modeling studies on industrial steam reforming of methane as well as with the those on lab-scale steam reforming of biogas. It demonstrates excellent agreement with them. Effect of change in biogas compositions on the performance of industrial steam reformer has been investigated in terms of methane conversion, yields of hydrogen and carbon monoxide, product gas compositions, reactor temperature and total pressure. For this, compositions of biogas (CH4/CO2 = 40/60 to 80/20), S/C ratio, reformer feed temperature and heat flux have been varied. Preferable feed conditions to the reformer are total molar feed rate of 21 kmol/h, steam to methane ratio of 4.0, temperature of 973 K and pressure of 25 bar. Under these conditions, industrial reformer fed with biogas, provides methane conversion (93.08–85.65%) and hydrogen yield (1.02–2.28), that are close to thermodynamic equilibrium condition.  相似文献   

5.
With the advancement of fuel cell technologies and growing interest in the hydrogen economy, the small-scale, distributed production of hydrogen has recently been receiving considerable research attention. The steam methane reforming (SMR) process, an established industrial process for large-scale hydrogen production, can also be successfully deployed for small-scale, low-pressure hydrogen production systems, including compact reformers, microchannel reformers, plate reformers, and monolithic reformers. In this study, the active reaction thickness of nickel catalyst layers was numerically determined by solving one-dimensional reaction/diffusion problems with finite volume method. The small-scale SMR conditions were considered, such as the reforming pressure of 1–3 bar, reforming temperature of 600–800 °C, and steam-to-carbon ratio of 2–4. The results showed the active thickness for the steam reforming and reverse methanation reactions hardly exceeded 0.15 mm for 600 °C, 0.07 mm for 700 °C, and 0.05 mm for 800 °C, at the reforming pressure of 1 bar. Besides, the effects of the volume-specific nickel surface area and diffusion properties were also investigated.  相似文献   

6.
An innovative steam reformer for hydrogen production at temperatures lower than 550 °C has been developed in the EU project CoMETHy (Compact Multifuel-Energy To Hydrogen converter). The steam reforming process has been specifically tailored and re-designed to be combined with Concentrating Solar plants using “solar salts”: a low-temperature steam reforming reactor was developed, operating at temperatures up to 550 °C, much lower than the traditional process (usually > 850 °C). This result was obtained after extensive research, going from the development of basic components (catalysts and membranes) to their integration in an innovative membrane reformer heated with molten salts, where both hydrogen production and purification occur in a single stage. The reduction of process temperatures is achieved by applying advanced catalyst systems and hydrogen selective Pd-based membranes. Process heat is supplied by using a low-cost and environmentally friendly binary NaNO3/KNO3 liquid mixture (60/40 w/w) as heat transfer fluid; such mixture is commonly used for the same purpose in the concentrating solar industry, so that the process can easily be coupled with concentrating solar power (CSP) plants for the supply of renewable process heat. This paper deals with the successful operation and validation of a pilot scale reactor with a nominal capacity of 2 Nm3/h of pure hydrogen from methane. The plant was operated with molten salt circulation for about 700 h, while continuous operation of the reactor was achieved for about 150 h with several switches of operating conditions such as molten salts inlet temperature, sweep steam flow rate and steam-to-carbon feed ratio. The results obtained show that the membrane reformer allows to achieve twice as high a conversion compared to a conventional reformer operating at thermodynamic equilibrium under the same conditions considered in this paper. A highly pure hydrogen permeate stream was obtained (>99.8%), while the outlet retentate stream had low CO concentration (<2%). No macroscopic signs of reactor performance loss were observed over the experimental operation period.  相似文献   

7.
Methane reforming is the most important and economical process for hydrogen and syngas generation. In this work, the dynamic simulation of methane steam reforming in an industrial membrane reformer for synthesis gas production is developed. A novel deactivation model for commercial Ni-based catalysts is proposed and the monthly collected data from an existing reformer in a domestic methanol plant is used to optimize the model parameters. The plant data is also employed to check the model accuracy. It was observed that the membrane reformer could compensate for the catalyst deactivating effect.In order to assure the long membrane lifetime and decrease the unit price, the membrane reformer with 5 μm thick Pd on stainless steel supports is modeled at the temperature below the maximum operating temperature of Pd based membranes (around 600 °C). The dynamic modeling showed that the methane conversion of 76% could be achieved at a moderate temperature of 600 °C for an industrial membrane reformer. The cost-effective generation of syngas with an appropriate H2/CO ratio of 2.6 could be obtained by membrane reformer. This is while the conventional reformer exhibits a maximum conversation of 64 at 1200 °C challenging due to its high syngas ratio (3.7). On the other hand, the pure hydrogen from membrane reformer can supply part of the ammonia reactor feed in an adjacent ammonia plant.  相似文献   

8.
Olivine, a natural mineral consisting of different metal oxides (mainly Mg, Si and Fe oxides) was used as a support for nickel catalyst used in steam reforming of ethanol. Catalyst containing different wt% of Ni on olivine were prepared by conventional wet-impregnation method and characterized by BET, XRD, SEM (coupled with EDS) and H2-TPR. The reaction was carried out in a tubular fixed bed reactor. Among all the catalysts, 5% Ni on olivine catalyst gave highest hydrogen yield as well as ethanol conversion through ethanol steam reforming reaction. The catalyst activity was analyzed by varying three important process parameters (temperature, ethanol to water molar ratio and space-time). The reaction was performed in the temperature range of 450 °C to 550 °C with 1:6 to 1:12 M feed ratio of ethanol to water at a space-time range 7.21–15.87 kg cat h/kmol ethanol. A maximum yield of 4.62 mol of hydrogen per mole of ethanol reacted was obtained at 550 °C with ethanol to steam molar ratio of 1:10 and space-time of 7.94 kg cat h/kmol ethanol with the ethanol conversion level of 97%. CHNS analysis of the spent catalyst was performed to find the coke deposited over the catalyst surface during the reaction. The power law and LHHW type kinetic models were developed. The power law model predicts the activation energy as 29.07 kJ/mol, whereas the LHHW type model gives the activation energy as 27.4 kJ/mol.  相似文献   

9.
The in-situ removal of CO2 and the increase of the energetic gas yield, including hydrogen and methane, by sorption enhanced steam hydrogasification (SE-SHR) process were investigated. Lignite was used in this study as the feedstock to the steam hydrogasification reaction (SHR) with the addition of calcined dolomite as a sorbent. CO2 was reduced dramatically with the introduction of the sorbent into the reactor. The production of hydrogen and methane was increased simultaneously. The hydrogen yield was increased by 60% when the calcium oxide to carbon molar ratio was increased to 0.86 as compared to the results without the sorbent. The hydrogen in the product gas was sufficient to maintain a self-sustained supply back to the SHR when the calcium oxide to carbon molar ratio was over 0.29. The performance of the SE-SHR was determined at different temperatures ranging from 650 °C to 800 °C and at different steam to carbon molar ratios. Additionally, the char conversion was also enhanced in all cases with the sorbent introduction. The synthesis gas production using SE-SHR coupled with steam methane reforming was also modeled by Aspen Plus. The simulation results showed that the H2/CO ratio of the synthesis gas generated based on SE-SHR process was 6 with higher overall energy efficiency of 74.5%. Summarily, the main findings of this study were that the overall performance of the SE-SHR was substantially improved compared to the conventional operation of the SHR and the quality of synthesis gas produced based on SE-SHR process was more flexible for the downstream processing.  相似文献   

10.
Thermodynamics of hydrogen production from conventional steam reforming (C-SR) and sorption-enhanced steam reforming (SE-SR) of bio-oil was performed under different conditions including reforming temperature, S/C ratio (the mole ratio of steam to carbon in the bio-oil), operating pressure and CaO/C ratio (the mole ratio of CaO to carbon in the bio-oil). Increasing temperature and S/C ratio, and decreasing the operating pressure were favorable to improve the hydrogen yield. Compared to C-SR, SE-SR had the significant advantage of higher hydrogen yield at lower desirable temperature, and showed a significant suppression for carbon formation. However excess CaO (CaO/C > 1) almost had no additional contribution to hydrogen production. Aimed to achieve the maximum utilization of bio-oil with as little energy consumption as possible, the influences of temperature and S/C ratio on the reforming performance (energy requirements and bio-oil consumption per unit volume of hydrogen produced, QD/H2 (kJ/Nm3) and YBio-oil/H2 (kg/Nm3)) were comprehensively evaluated using matrix analysis while ensuring the highest hydrogen yield as possible. The optimal operating parameters were confirmed at 650 °C, S/C = 2 for C-SR; and 550 °C, S/C = 2 for SE-SR. Under their respective optimal conditions, the YBio-oil/H2 of SE-SR is significant decreased, by 18.50% compared to that of C-SR, although the QD/H2 was slightly increased, just by 7.55%.  相似文献   

11.
Thermodynamics equilibrium analysis of carbon dioxide reforming of methane combined with steam reforming to synthesis gas was studied by Gibbs free energy minimization method to understand the effects of process variables such as temperature, pressure and inlet CH4/H2O/CO2 ratios on product distributions. For this purpose, the calculations were carried out at total pressures of 1 and 20 bar, and at ranges of temperature and steam-to-carbon ratios of 200–1200 °C and 0–0.50, respectively. The results revealed that carbon dioxide reforming of methane combined with steam reforming process was controlled by different reactions with regard to the operating temperature, pressure and varying feed compositions. The H2/CO product ratio could be modified by changing the relative concentration of steam and CO2 in the feed, temperature and pressure, depending on the downstream application.  相似文献   

12.
To construct a system for the effective hydrogen production from food waste, the conditions of anaerobic digestion and biogas reforming have been investigated and optimized. The type of agitator and reactor shape affect the performance of anaerobic digestion reactors. Reactors with a cubical shape and hydrofoil agitator exhibit high performance due to the enhanced axial flow and turbulence as confirmed by simulation of computational fluid dynamics. The stability of an optimized anaerobic digestion reactor has been tested for 60 days. As a result, 84 L of biogas is produced from 1 kg of food waste. Reaction conditions, such as reaction temperature and steam/methane ratio, affect the biogas steam reforming reaction. The reactant conversions, product yields, and hydrogen production are influenced by reaction conditions. The optimized reaction conditions include a reaction temperature of 700 °C and H2O/CH4 ratio of 1.0. Under these conditions, hydrogen can be produced via steam reforming of biogas generated from a two-stage anaerobic digestion reactor for 25 h without significant deactivation and fluctuation.  相似文献   

13.
There is a growing interest in the usage of hydrogen as an environmentally cleaner form of energy for end users. However, hydrogen does not occur naturally and needs to be produced through energy intensive processes, such as steam reformation. In order to be truly renewable, hydrogen must be produced through processes that do not lead to direct or indirect carbon dioxide emissions. Dry reformation of methane is a route that consumes carbon dioxide to produce hydrogen. This work describes the production of hydrogen from biomass via anaerobic digestion of waste biomass and dry reformation of biogas. This process consumes carbon dioxide instead of releasing it and uses only renewable feed materials for hydrogen production. An end-to-end simulation of this process is developed primarily using Aspen HYSYS® and consists of steady state models for anaerobic digestion of biomass, dry reformation of biogas in a fixed-bed catalytic reactor containing Ni–Co/Al2O3 catalyst, and a custom-model for hydrogen separation using a hollow fibre membrane separator. A mixture-process variable design is used to simultaneously optimize feed composition and process conditions for the process. It is identified that if biogas containing 52 mol% methane, 38 mol% carbon dioxide, and 10 mol% water (or steam) is used for hydrogen production by dry reformation at a temperature of 837.5 °C and a pressure of 101.3 kPa; optimal values of 89.9% methane conversion, 99.99% carbon dioxide conversion and hydrogen selectivity 1.21 can be obtained.  相似文献   

14.
In this work, a synthetic mixture of natural gas is considered in a steam reforming process for generating hydrogen by using a membrane reactor housing a composite membrane constituted of a Pd-layer (13 μm) supported on alumina. The Pd/Al2O3 membrane separates part of the produced hydrogen through its selective permeation, although it shows a relatively low H2/N2 ideal selectivity (>200 at 0.5 bar of trans-membrane pressure and T = 425 °C).The steam reforming reaction is performed at 420 °C, by varying the gas hourly space velocity between 4400 h?1 and 6900 h?1 and by using two different mixtures containing some common impurities found within natural gas pipeline. Specifically, the effect of N2 and CO2 as impurities in the feed line is analyzed. The reaction pressure and steam-to-carbon ratio (S/C) are kept constant at 3.0 bar (abs.) and 3.5/1, respectively.The best performance of the Pd-based membrane reactor is obtained at 420 °C, 3.0 bar and 100 mL/min of sweep-gas, yielding a methane conversion of 55% and hydrogen recovery >90%.  相似文献   

15.
The internal steam reforming of methane (CH4) on conventional solid oxide fuel cell (SOFC) anode (nickel-yttria stabilized zirconia or Ni-YSZ) offers significant advantages compared to the external reforming process. However, the technology is currently facing some major issues such as coking and oxidation of anode during operation. Here we report a low-temperature sinterable catalyst, Ce0·77Ni0·2Mn0·03O2-δ (CNMnO), applied on top of Ni-YSZ to perform the steam reforming reaction. A single cell with CNMnO/Ni-YSZ/YSZ/GDC/LSC configuration produces a peak power density of 492 mW cm?2 in wet hydrogen and 371 mW cm?2 in wet methane, at 600 °C. The cell also shows exceptional durability against Ni oxidation when tested in wet methane under 0.2 A cm?2 for 100 h. The improved performance and durability of the catalyst layer has been attributed to the nanosized precipitated Ni and Mn particles distributed on the surface of individual CNMnO particles.  相似文献   

16.
《Journal of power sources》2006,155(2):340-352
Thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the combined processes of dimethyl ether (DME) partial oxidation and steam reforming were investigated as a function of oxygen-to-carbon ratio (0.00–2.80), steam-to-carbon ratio (0.00–4.00), temperature (100 °C–600 °C), pressure (1–5 atm) and product species.Thermodynamically, dimethyl ether processed with air and steam generates hydrogen-rich fuel-cell feeds; however, the hydrogen concentration is less than that for pure DME steam reforming. Results of the thermodynamic processing of dimethyl ether indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 °C, oxygen-to-carbon ratios greater than 0.00 and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure has negligible effects on the hydrogen content. Thermodynamically, dimethyl ether can produce concentrations of hydrogen and carbon monoxide of 52% and 2.2%, respectively, at a temperature of 300 °C, and oxygen-to-carbon ratio of 0.40, a pressure of 1 atm and a steam-to-carbon ratio of 1.50. The order of thermodynamically stable products (excluding H2, CO, CO2, DME, NH3 and H2O) in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol and methyl-ethyl ether; trace amounts of formaldehyde, formic acid and methanol are observed.Ammonia and hydrogen cyanide are also thermodynamically favored products. Ammonia is favored at low temperatures in the range of oxygen-to-carbon ratios of 0.40–2.50 regardless of the steam-to-carbon ratio employed. The maximum ammonia content (i.e., 40%) occurs at an oxygen-to-carbon ratio of 0.40, a steam-to-carbon ratio of 1.00 and a temperature of 100 °C. Hydrogen cyanide is favored at high temperatures and low oxygen-to-carbon ratios with a maximum of 3.18% occurring at an oxygen-to-carbon ratio of 0.40 and a steam-to-carbon ratio of 0.00 in the temperature range of 400 °C–500 °C. Increasing the system pressure shifts the equilibrium toward ammonia and hydrogen cyanide.  相似文献   

17.
Cobalt ferrite and hematite with minor additives have been tested for production and purification of high purity hydrogen from a synthetic biogas by steam-iron process (SIP) in a fixed bed reactor. A catalyst based in nickel aluminate has been included in the bed of solids to enhance the rate of the reaction of methane dry reforming (MDR). The reductants resulting from MDR are responsible for reducing the oxides based on iron that will, in the following stage, be oxidized by steam to release hydrogen with less than 50 ppm of CO. Coke minimization along reduction stages forces to operate such reactors above 700 °C for reductions, and as low as 500 °C for oxidations to avoid coke gasification. To avoid problems such as reactor clogging by coke in reductions and/or contamination of hydrogen by gasification of coke along oxidations, steam in small proportions has been included in the feed with the aim of minimizing or even avoiding formation of carbonaceous depositions along the reduction stage of SIP. Since steam is an oxidant, it exerts an inhibiting effect upon reduction of the oxide, that slows down the efficiency of the process. It has been proved that co-feeding low proportions of steam with an equimolar mixture of CH4 and CO2 (simulating a poor heating value desulphurized biogas) is able to avoid coke deposition, allowing the operation of both, reductions and oxidations, in isothermal regime (700 °C). Empirical results have been contrasted with data found in literature for similar processes based in MDR and combined (or mixed) reforming process (CMR), concluding that the combination of MDR + SIP proposed in this work, taking apart economic aspects and complex engineering, shows similar yields towards hydrogen, but with the advantage of not requiring a subsequent purification process.  相似文献   

18.
In this paper, a numerical analysis of the production of hydrogen via autothermal (ATR) steam methane reforming (SMR) is presented. The combustion reaction occurs over a Pt/Al2O3 catalyst, and the reforming reaction is operated using a Ni/Al2O3 catalyst inside the same cylindrical channel. A novel configuration with18 catalytic-bed macro-patterns alternately mounted, referred to as SDB, is designed and compared with the catalytic dual-bed reactor (conventional configuration), referred to as CDB, at the same operating temperature and pressure conditions of 900 °C and 14 bars, respectively. The results showed that hydrogen yield was improved by 4.5% compared to the conventional configuration, while a decrease of 67 °C of the highest temperature was noticed. Meanwhile, the methane conversion was 63.73% and 65.44% for the CDB and SDB configurations, respectively. Furthermore, the length of the reactor can be decreased by 27%, keeping the same hydrogen yield at the outlet of the conventional reactor, indicating a potential reduction in hydrogen cost.  相似文献   

19.
In our earlier work, we have reported that Ni supported on γ-Al2O3–La2O3–CeO2 (ALC) catalyst prepared via metal organic framework (MOF) was more active for acetic acid steam reforming (AASR) [1]. Here we report detailed study on the performance of this catalyst for AASR. Effects of operating conditions such as temperatures (400–650 °C), steam to carbon molar ratio (S/C) and feed flow rate (1.5–5.5 mL/h) were evaluated and optimized. Results showed an excellent activity for AASR at the molar ratio S/C = 6.5, feed flow rate = 2.5 mL/h and, at 600 °C with almost total conversion and more than 90% of H2 yield. The ordered porous structure of embedded nickel supported catalyst promotes excellent steam reforming activity and water gas shift reaction even at low temperatures, which leads to the good stable behaviour up to 36 h of TOS. The coke formation was also significantly suppressed by ALC support. Catalyst regenerated by passing oxygen at 500 °C and followed by reduction in hydrogen also show a good activity. Catalysts were characterized by DT-TGA, XRD, TEM, H2-TPR and N2-adsorption-desorption to understand the micro structure and coke deposition behaviour.  相似文献   

20.
A statistical modeling and optimization study on the thermodynamic equilibrium of methanol steam reforming (MSR) process was performed by using Aspen Plus and the response surface methodology (RSM). The impacts of operation parameters; temperature, pressure and steam-to-methanol ratio (H2O/MeOH) on the product distribution were investigated. Equilibrium compositions of the H2-rich stream and the favorable conditions within the operating range of interest (temperature: 25–600 °C, pressure: 1–3.0 atm, H2O/MeOH: 0–7.0) were analyzed. Furthermore, ideal conditions were determined to maximize the methanol conversion, hydrogen production with high yield and to minimize the undesirable products such as CO, methane, and carbon. The optimum corresponding MSR thermodynamic process parameters which are temperature, pressure and H2O/MeOH ratio for the production of HT-PEMFC grade hydrogen were identified to be 246 °C, 1 atm and 5.6, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号