首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Green hydrogen produced from intermittent renewable energy sources is a key component on the way to a carbon neutral planet. In order to achieve the most sustainable, efficient and cost-effective solutions, it is necessary to match the dimensioning of the renewable energy source, the capacity of the hydrogen production and the size of the hydrogen storage to the hydrogen demand of the application.For optimized dimensioning of a PV powered hydrogen production system, fulfilling a specific hydrogen demand, a detailed plant simulation model has been developed. In this study the model was used to conduct a parameter study to optimize a plant that should serve 5 hydrogen fuel cell buses with a daily hydrogen demand of 90 kg overall with photovoltaics (PV) as renewable energy source. Furthermore, the influence of the parameters PV system size, electrolyser capacity and hydrogen storage size on the hydrogen production costs and other key indicators is investigated. The plant primarily uses the PV produced energy but can also use grid energy for production.The results show that the most cost-efficient design primarily depends on the grid electricity price that is available to supplement the PV system if necessary. Higher grid electricity prices make it economically sensible to invest into higher hydrogen production and storage capacity. For a grid electricity price of 200 €/MWh the most cost-efficient design was found to be a plant with a 2000 kWp PV system, an electrolyser with 360 kW capacity and a hydrogen storage of 575 kg.  相似文献   

2.
Green energy commodities are expected to be central in decarbonising the global energy system. Such green energy commodities could be hydrogen or other hydrogen-based energy commodities produced from renewable energy sources (RES) such as solar or wind energy. We quantify the production cost and potentials of hydrogen and hydrogen-based energy commodities ammonia, methane, methanol, gasoline, diesel and kerosene in 113 countries. Moreover, we evaluate total supply costs to Germany, considering both pipeline-based and maritime transport. We determine production costs by optimising the investment and operation of commodity production from dedicated RES based on country-level RES potentials and country-specific weighted average costs of capital. Analysing the geographic distribution of production and supply costs, we find that production costs dominate the supply cost composition for liquid or easily liquefiable commodities, while transport costs dominate for gaseous commodities. In the case of Germany, importing green ammonia could be more cost-efficient than domestic production from locally produced or imported hydrogen. Green ammonia could be supplied to Germany from many regions worldwide at below the cost of domestic production, with costs ranging from 624 to 874 $/t NH3 and Norway being the cheapest supplier. Ammonia production using imported hydrogen from Spain could be cost-effective if a pan-European hydrogen pipeline grid based on repurposed natural gas pipelines exists.  相似文献   

3.
    
Many countries in Europe are investing in fuel cell bus technology with the expected mobilization of more than 1200 buses across Europe in the following years. The scaling-up will make indispensable a more effective design and management of hydrogen refueling stations to improve the refueling phase in terms of refueling time and dispensed quantity while containing the investment and operation costs. In the present study, a previously developed dynamic lumped model of a hydrogen refueling process, developed in MATLAB, is used to analyze tank-to-tank fuel cell buses (30–40 kgH2 at 350 bar) refueling operations comparing a single-tank storage with a multi-tank cascade system. The new-built Aalborg (DK) hydrogen refueling station serves as a case study for the cascade design. In general, a cascading refueling approach from multiple storage tanks at different pressure levels provides the opportunity for a more optimized management of the station storage, reducing the pressure differential between the refueling and refueled tanks throughout the whole refueling process, thus reducing compression energy. This study demonstrates the validity of these aspects for heavy-duty applications through the technical evaluation of the refueling time, gas heating, compression energy consumption and hydrogen utilization, filling the literature gap on cascade versus single tank refueling comparison. Furthermore, a simplified calculation of the capital and operating expenditures is conducted, denoting the cost-effectiveness of the cascade configuration under study. Finally, the effect of different pressure switching points between the storage tanks is investigated, showing that a lower medium pressure usage reduces the compression energy consumption and increases the station flexibility.  相似文献   

4.
    
In Norway, where nearly 100% of the power is hydroelectric, it is natural to consider water electrolysis as the main production method of hydrogen for zero-emission transport. In a startup market with low demand for hydrogen, one may find that small-scale WE-based hydrogen production is more cost-efficient than large-scale production because of the potential to reach a high number of operating hours at rated capacity and high overall system utilization rate. Two case studies addressing the levelized costs of hydrogen in local supply systems have been evaluated in the present work: (1) Hydrogen production at a small-scale hydroelectric power plant (with and without on-site refueling) and (2) Small hydrogen refueling station for trucks (with and without on-site hydrogen production). The techno-economic calculations of the two case studies show that the levelized hydrogen refueling cost at the small-scale hydroelectric power plant (with a local station) will be 141 NOK/kg, while a fleet of 5 fuel cell trucks will be able to refuel hydrogen at a cost of 58 NOK/kg at a station with on-site production or 71 NOK/kg at a station based on delivered hydrogen. The study shows that there is a relatively good business case for local water electrolysis and supply of hydrogen to captive fleets of trucks in Norway, particularly if the size of the fleet is sufficiently large to justify the installation of a relatively large water electrolyzer system (economies of scale). The ideal concept would be a large fleet of heavy-duty vehicles (with a high total hydrogen demand) and a refueling station with nearly 100% utilization of the installed hydrogen production capacity.  相似文献   

5.
    
Recent progress in submerged liquid hydrogen (LH2) cryopump technology development offers improved hydrogen fueling performance at a reduced cost in medium- and heavy-duty (MDV and HDV) fuel cell vehicle refueling applications at 35 MPa pressure, compared to fueling via gas compression. In this paper, we evaluate the fueling cost associated with cryopump-based refueling stations for different MDV and HDV hydrogen demand profiles. We adapt the Heavy Duty Refueling Station Analysis Model (HDRSAM) tool to analyze the submerged cryopump case, and compare the estimated fuel dispensing costs of stations supplied with LH2 for fueling Class 4 delivery van (MDV), public transit bus (HDV), and Class 8 truck (HDV) fleets using cryopumps relative to station designs. A sensitivity analysis around upstream costs illustrates the trade-offs associated with H2 production from onsite electrolysis versus central LH2 production and delivery. Our results indicate that LH2 cryopump-based stations become more economically attractive as the total station capacity (kg dispensed per day) and hourly demand (vehicles per hour) increase. Depending on the use case, savings relative to next best options range from about 5% up to 44% in dispensed costs, with more favorable economics at larger stations with high utilization.  相似文献   

6.
    
This study presents a detailed design, economic, sensitivity and uncertainty analysis for establishing a hydropower based green ammonia plant for use in urea manufacturing in the context of Nepal. The electrolyzer plant for producing hydrogen was simulated with the help of DWSIM while the air separation and ammonia synthesis units were simulated with the help of Aspen Plus for producing 1245 ton/day of ammonia to meet the annual urea demand of Nepal. The capitalized cost of the electrolyzer, air separation and the ammonia synthesis unit of this size were calculated to be 26 million, 7 million and 9 million USD/year respectively. The levelized cost of hydrogen (H2) and ammonia (NH3) were found to be 3602 and 826 USD/ton respectively. Economic profitability analysis showed profitability of the plant with ROI and IRR of 38% and 26% respectively with a payback period of three years after operation. The sensitivity analysis showed strong sensitivity on the utility (electricity) cost for both the electrolyzer and ammonia synthesis unit which presents a strong opportunity for Nepal. The levelized cost for H2 and NH3 varied between 2845 USD/ton and 4361 USD/ton and 634 USD/ton and 1018 USD/ton respectively for ±30% variation in the utility (electricity) cost. Uncertainty analysis using Monte Carlo method showed the possible minimum levelized cost of H2 and NH3 to be 2340 USD/ton and 418 USD/ton respectively. This study illustrates the potential of hydropower based ammonia synthesis for urea manufacturing and provides an important baseline value for policymakers to make investment decisions and to formulate policies for this pathway of production.  相似文献   

7.
加氢站(HRS)是氢能高效利用的重要环节,是促进燃料电池汽车行业发展的重要基础设施。本文介绍了外供氢加氢站一般系统流程及配置方法;整理了国内外关于系统流程的优化措施,其中包括常规系统的部件(如长管拖车、站侧储罐配置及预冷系统)的配置优化,以及非常规部件的新型系统(如喷射器、涡流管或膨胀机)的集成;最后对未来优化方向进行了展望。  相似文献   

8.
    
Long-distance road-freight transport emits a large share of Germany's greenhouse gas (GHG) emissions. A potential solution for reducing GHG emissions in this sector is to use green hydrogen in fuel cell electric vehicles (FC-HDV) and establish an accompanying hydrogen refueling station (HRS) network. In this paper, we apply an existing refueling network design model to a HDV-HRS network for Germany until 2050 based on German traffic data for heavy-duty trucks and estimate its costs. Comparing different fuel supply scenarios (pipeline vs. on-site), The on-site scenario results show a network consisting of 137 stations at a cost of 8.38 billion € per year in 2050 (0.40 € per vehicle km), while the centralized scenario with the same amount of stations shows a cheaper cost with 7.25 billion euros per year (0.35 € per vehicle km). The hydrogen cost (LCOH) varies from 5.59 €/kg (pipeline) to 6.47 €/kg (on-site) in 2050.  相似文献   

9.
The cost of hydrogen in early fuel cell electric vehicle (FCEV) markets is dominated by the cost of refueling stations, mainly due to the high cost of refueling equipment, small station capacities, lack of economies of scale, and low utilization of the installed refueling capacity. Using the hydrogen delivery scenario analysis model (HDSAM), this study estimates the impacts of these factors on the refueling cost for different refueling technologies and configurations, and quantifies the potential reduction in future hydrogen refueling cost compared to today's cost in the United States. The current hydrogen refueling station levelized cost, for a 200 kg/day dispensing capacity, is in the range of $6–$8/kg H2 when supplied with gaseous hydrogen, and $8–$9/kg H2 for stations supplied with liquid hydrogen. After adding the cost of hydrogen production, packaging, and transportation to the station's levelized cost, the current cost of hydrogen at dispensers for FCEVs in California is in the range of $13–$15/kg H2. The refueling station capacity utilization strongly influences the hydrogen refueling cost. The underutilization of station capacity in early FCEV markets, such as in California, results in a levelized station cost that is approximately 40% higher than it would be in a scenario where the station had been fully utilized since it began operating. In future mature hydrogen FCEV markets, with a large demand for hydrogen, the refueling station's levelized cost can be reduced to $2/kg H2 as a result of improved capacity utilization and reduced equipment cost via learning and economies of scale.  相似文献   

10.
    
Promoting fuel cells has been one of China's ambitious hydrogen policies in the past few years. Currently, several hydrogen fueling stations (HRSs) are under construction in China to fuel hydrogen-driven vehicles. In this regard, it is necessary to assess the risks of hydrogen leakage in HRSs. Aiming at conducting a comprehensive consequence assessment of liquid hydrogen (LH2) leakage on China's first liquid hydrogen refueling station (LHRS) in Pinghu, a pseudo-source model is established in the present study to simulate the LH2 leakage using a commercial CFD tool, FLACS. The effects of the layout of the LHRS, leakage parameters, and local meteorological conditions on the LH2 leakage consequence has been assessed from the perspectives of low-temperature hazards and explosion hazards. The obtained results reveal that considering the prevailing southeast wind in Pinghu city, the farthest low-temperature hazard distance and lower flammable limit (LFL) -distance occurs in the leakage scenario along the north direction. It is found that the trailer parking location in the current layout of the LHRS will worsen the explosion consequences of the LH2 leakage. Moreover, the explosion will completely destroy the control room and endanger people on the adjacent road when the leakage equivalent diameter is 25.4 mm. The performed analyses reveal that as the wind speed increases, the explosion hazard decreases.  相似文献   

11.
    
Hydrogen refueling station (HRS) capacity and location depend on the users, which makes it difficult to select the most favorable option before potential users are actually identified. As in Croatia, at least for now, there are no hydrogen users, this study considers a wide range of HRS capacities and their different configurations. These include hydrogen production and charging station within one existing wind farm in Croatia or both nearby the users, the hydrogen production within the wind farm and the charging station nearby the users, while hydrogen is delivered to the station with a tube trailer, and configuration of hydrogen production within the wind farm with a mobile charging station in case of several users in different locations. Each HRS configuration is evaluated by the obtained levelized cost of hydrogen depending on the capital, and operation and maintenance costs within the HRS techno-economic analysis provided.  相似文献   

12.
    
Three aspects of producing hydrogen via renewable electricity sources are analyzed to determine the potential for solar and wind hydrogen production pathways: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices. For renewables to produce hydrogen at $2 kg−1, using electrolyzers available in 2004, electricity prices would have to be less than $0.01 kWh−1. Additionally, energy requirements for hydrogen refueling stations are in excess of 20 GWh/year. It may be challenging for dedicated renewable systems at the filling station to meet such requirements. Therefore, while plentiful resources exist to provide clean electricity for the production of hydrogen for transportation fuel, challenges remain to identify optimum economic and technical configurations to provide renewable energy to distributed hydrogen refueling stations.  相似文献   

13.
An operation strategy known as two-tier “pressure consolidation” of delivered tube-trailers (or equivalent supply storage) has been developed to maximize the throughput at gaseous hydrogen refueling stations (HRSs) for fuel cell electric vehicles (FCEVs). The high capital costs of HRSs and the consequent high investment risk are deterring growth of the infrastructure needed to promote the deployment of FCEVs. Stations supplied by gaseous hydrogen will be necessary for FCEV deployment in both the near and long term. The two-tier pressure consolidation method enhances gaseous HRSs in the following ways: (1) reduces the capital cost compared with conventional stations, as well as those operating according to the original pressure consolidation approach described by Elgowainy et al. (2014) [1], (2) minimizes pressure cycling of HRS supply storage relative to the original pressure consolidation approach; and (3) increases use of the station's supply storage (or delivered tube-trailers) while maintaining higher state-of-charge vehicle fills.  相似文献   

14.
We have modeled an approach for dispensing pressurized hydrogen to 350 and/or 700 bar vehicle vessels. Instead of relying on compressors, this concept stores liquid hydrogen in cryogenic pressure vessels where pressurization occurs through heat transfer, reducing the station energy footprint from 12 kW h/kgH2 of energy from the US grid mix to 1.5–2 kW h/kgH2 of heating. This thermal compression station presents capital cost and reliability advantages by avoiding the expense and maintenance of high-pressure hydrogen compressors, at the detriment of some evaporative losses. The total installed capital cost for a 475 kg/day thermal compression hydrogen refueling station is estimated at about $611,500, an almost 60% cost reduction over today's refueling station cost. The cost for 700 bar dispensing is $5.23/kg H2 for a conventional station vs. $5.45/kg H2 for a thermal compression station. If there is a demand for 350 bar H2 in addition to 700 bar dispensing, the cost of dispensing from a thermal compression station drops to $4.81/kg H2, which is similar to the cost of a conventional station that dispenses 350 bar H2 only. Thermal compression also offers capacity flexibility (wide range of pressure, temperature, and station demand) that makes it appealing for early market applications.  相似文献   

15.
    
This study was conducted to estimate the potential for green H2 in Paraguay. A total production potential of 22.5 × 106 tons/year was obtained with a main contribution (93.34%) from solar photovoltaic. The greatest potential for producing H2 from solar and wind resources is in the Western region, and from hydro resources is in the Eastern region of the country. Two end-uses of green H2 were assessed: (1) automotive transportation, replacing gasoline and diesel; and (2) residential energy, replacing firewood and LPG for cooking in households across the country. In 16 of the 17 departments, green H2 is able to replace the overall consumption of gasoline and diesel, as well as firewood and LPG. Finally, energy service cost (mobility), environmental aspects and CO2 emissions were considered for three urban mobility technologies for the Metropolitan Area of Asunción. Results show that the mobility cost of fuel cell hybrid electric buses is still very high in comparison to diesel buses and battery electric buses. However, when a longer driving range is required, fuel cell hybrid electric buses could become a viable alternative in the long term. From an environmental point of view, green H2 used in fuel cell hybrid electric buses has the potential to save about 96% of CO2 emissions in comparison to diesel buses. It is concluded that the estimated green H2 production potential favors the incorporation of the Hydrogen Economy in Paraguay.  相似文献   

16.
    
Hydrogen has been identified as a potential gamechanger and ambitious national targets have been announced by many governments around the world. However, the lack of clear policy signals at the country level remains a barrier and significant cost reduction progress is unlikely to be made unless the issue is addressed. The paper aims to assess whether current UK energy policies support an economic case for low-carbon and competitive H2 production. A financial model is developed for hypothetical H2 projects based in the UK. Price assumptions are assigned to a specific set of policies in combination with the key technical considerations for H2 production and estimated return. The study concludes that H2 development featuring electrolysers or carbon capture and storage cannot rely on market forces alone to reach full commercialisation and competitiveness in the UK. While policies improve the economic case for H2 in some key areas, existing frameworks are not ambitious enough to advance the transition to low carbon options such as Blue and Green H2. Moreover, current policies do not sufficiently disincentivise investments in emission-intensive alternatives.  相似文献   

17.
    
Green hydrogen from electrolysis has become the most attractive energy carrier for making the transition from fossil fuels to carbon-free energy sources possible. Especially in the naval sector, hydrogen has the potential to address environmental targets due to the lack of low-carbon fuel options. This study aims at investigating an offshore liquefied green hydrogen production plant for ship refueling. The plant comprises a wind farm for renewable electricity generation, an electrolyzer stack for hydrogen production, a water treatment unit for demineralized water production, and a hydrogen liquefaction plant for hydrogen storage and distribution to ships. A pre-feasibility study is addressed to find the optimal capacities of the plant that minimize the payback time. The model results show that the electrolyzer capacity shall be set equal to a value between 80% and 90% of the wind farm capacity to achieve the minimum payback times. Additionally, the wind farm capacity shall be higher than about 150 MW to limit the payback time to values lower than 11 years for a fixed hydrogen price of 6 €/kg. The Levelized Cost of Hydrogen results to be below 4 €/kg for a wide range of plant capacities for a lifetime of the plant of 25 years. Thus, the model shows that this plant is economically feasible and can be reproduced similarly for different locations by rescaling the different selected technologies. In this way, the naval sector can be decarbonized thanks to a new infrastructure for the production and refueling of liquified green hydrogen directly provided on the sea.  相似文献   

18.
Pakistan's energy crisis can be diminished through the use of Renewable and alternative sources of energy. Hydrogen as an energy vector is likely to replace the fossil fuels in the future owing to the political, financial and environmental factors associated with the latter. In this regard it is imperative that conscious effort is directed towards the production of hydrogen from Renewable resources. Renewable energy resources are abundantly available in Pakistan. The need to produce Hydrogen from Renewable resources in Pakistan (or any developing economy) is investigated because it is possible to store vast amount of intermittent renewable energy for later use. Thus the introduction of Hydrogen in the energy supply chain implies the start of a Pakistan Hydrogen Economy. Many nations have developed the Hydrogen Energy Roadmap, and if Pakistan has to follow suite it is only possible through the employment of Renewable energy resources. This study estimates the potential of different Renewable resources available in Pakistan i.e. Solar, Wind, Geothermal, Biomass and Municipal Solid waste. An estimate is then made for the potential of producing hydrogen from various established technologies from each of these Renewable resources. A number of reviews have been published stating the availability and usage of Renewable energy in Pakistan; however no specific study has been focused on the use of Renewable resources for developing a Hydrogen economy or a power-to-gas system in Pakistan. This study concludes that that Biomass is the most feasible feedstock for developing a Hydrogen supply chain in Pakistan with a potential to generate 6.6 million tons of Hydrogen annually, followed by Solar PV that has a generation potential of 2.8 million tons and then Municipal solid waste with a capacity of 1 million ton per annum.  相似文献   

19.
    
This study presents design concepts for hydrogen supply chains as a way to investigate how to transport green hydrogen from offshore sites to onshore sites where it would be available to consumers. The six concepts suggested are based on compressed hydrogen, a pipeline, liquefied hydrogen, liquid organic hydrogen carriers (LOHC), ammonia, and a subsea cable. Most of the concepts transported the hydrogen from production to consumption sites, but in the case of the subsea cable transferred electricity from the offshore wind farm. All the design concept were created to satisfy the same specific case study. For this case study, the East Sea was selected as the hydrogen production site, Busan port was chosen as the hydrogen consumption site. The six concepts were applied to the suggested case study before being compared from the viewpoint of each system's complexity. The results show that the pipeline- and subsea cable-based hydrogen supply chains are relatively simple relative to the other concepts, the LOHC- and ammonia-based hydrogen supply chains are inherently more complex because they require de-hydrogenation and cracking processes to extract hydrogen from the LOHC and ammonia. On the other hand, ammonia and liquefied hydrogen have advantages in terms of ship transportation because they both provide high volumetric densities. In the case of ammonia, the infrastructure required would be significantly reduced if it could be directly used as a fuel without the cracking and purification processes. This study proposes and compares various hydrogen supply chain concepts with the goal that the results will prove helpful to those attempting to create an offshore hydrogen supply chain by providing fundamental data to decision-makers in the early design stages.  相似文献   

20.
    
The Pilbara, located in Western Australia is one of the largest iron ore-mining regions in the world and will need to achieve significant emission reductions in the short term to conserve the limited carbon budget and abide by the Paris Agreement targets. Green hydrogen has been communicated as the desired solution, however, the high production cost limits the deployment of these systems. The thermo-catalytic methane decomposition (TCMD) process is an alternative solution, which could be implemented as a bridge technology to produce low-emission hydrogen at a potentially lower cost. This is especially attractive for iron ore mines due to the utilisation of iron ore as a process catalyst, which reduces the catalyst turnover costs and can increase the grade of spent iron ore catalyst. In this study, a preliminary techno-economic assessment was carried out in comparison with green hydrogen to determine the feasibility of the TCMD process for the decarbonisation of iron ore mine sites in the Pilbara. The results show that the TCMD process had a CO2 abatement cost between 25 and 40% less than green hydrogen, however, the magnitude of these costs was lowest for mining operations >60 Mt/yr at approximately $150 and $200 USD/t CO2 respectively. Since green hydrogen is expected to have significant cost reductions in the future, integrating renewables already into the mine could reduce emissions in the short term, which could then be extended for green hydrogen production once it becomes viable. The TCMD process, therefore, only has a narrow window of opportunity, although considering the uncertainty of the process and that green hydrogen is a proven technology with greater emission-reduction potential, green hydrogen may be the most suitable solution despite the model results presented in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号