首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The production of H2 via sorption enhanced steam reforming (SE-SMR) of CH4 using 18 wt % Ni/Al2O3 catalyst and CaO as a CO2-sorbent was simulated for an adiabatic packed bed reactor at the reduced pressures typical of small and medium scale gas producers and H2 end users. To investigate the behaviour of reactor model along the axial direction, the mass, energy and momentum balance equations were incorporated in the gPROMS modelbuilder®. The effect of operating conditions such as temperature, pressure, steam to carbon ration (S/C) and gas mass flow velocity (Gs) was studied under the low-pressure conditions (2–7 bar). Independent equilibrium based software, chemical equilibrium with application (CEA), was used to compare the simulation results with the equilibrium data. A good agreement was obtained in terms of CH4 conversion, H2 yield (wt. % of CH4 feed), purity of H2 and CO2 capture for the lowest (Gs) representing conditions close to equilibrium under a range of operating temperatures pressures, feed steam to carbon ratio. At Gs of 3.5 kg m−2s−1, 3 bar, 923 K and S/C of 3, CH4 conversion and H2 purity were up to 89% and 86% respectively compared to 44% and 63% in the conventional reforming process.  相似文献   

2.
Thermodynamics equilibrium analysis of carbon dioxide reforming of methane combined with steam reforming to synthesis gas was studied by Gibbs free energy minimization method to understand the effects of process variables such as temperature, pressure and inlet CH4/H2O/CO2 ratios on product distributions. For this purpose, the calculations were carried out at total pressures of 1 and 20 bar, and at ranges of temperature and steam-to-carbon ratios of 200–1200 °C and 0–0.50, respectively. The results revealed that carbon dioxide reforming of methane combined with steam reforming process was controlled by different reactions with regard to the operating temperature, pressure and varying feed compositions. The H2/CO product ratio could be modified by changing the relative concentration of steam and CO2 in the feed, temperature and pressure, depending on the downstream application.  相似文献   

3.
A new carbon capture and recycle (CCR) system based on multi-reforming of CH4 with CO2 is proposed in this study. The aim was to develop a novel method to remediate greenhouse gases (CO2) using a high temperature (over 1173 K) process of reforming CH4 and/or O2, and/or H2O without catalysts. Using this novel method, the reactants are individually preheated to over 1173 K using a ceramic honeycomb heat exchanger, and then these high temperature streams enter the reactor to start the reforming reactions. Both thermodynamic and experimental studies were carried out on this novel method. Thermodynamic equilibrium models were built for four types of reforming, including dry reforming, bi-reforming, auto-thermal reforming, and tri-reforming. Only dry reforming was experimentally tested. The feasibility of this novel technology was proven by simulated and experimental results. High temperatures significantly promoted the multi-reforming process while avoiding the problem of catalyst deactivation. The experimental results on the direct system also showed that potential improvements in the efficiency of the novel technology could be achieved by optimizing the reforming reactants. Therefore, a continuous system was proposed. Moreover, the power source for the application of CCR systems was also discussed.  相似文献   

4.
Oxidative dry reforming of methane has been performed for 100 h on stream using Ni supported on MgAl2O4 spinel at different loadings at 500–700 °C, CO2/CH4 molar ratio of 0.76, and variable O2/CH4 molar ratio (0.12–0.47). Syngas with an H2/CO ratio of 1.5–2.1 has been produced by manipulating reforming feed composition and temperature. The developed oxidative dry reforming process allowed high CH4 conversion at all conditions, while CO2 conversion decreased significantly with the lowering of the reforming temperature and increasing O2 concentration. When considering both greenhouse gas conversions and H2/CO ratio enhancement, the optimal reforming condition should be assigned to 550 °C and O2/CH4 molar ratio of 0.47, which delivered syngas with H2/CO ratio of 1.5. Coke-free operation was also achieved, due to the combustion of surface carbon species by oxygen. The 3.4 wt% Ni/MgAl2O4 catalyst with a mean Ni nanoparticle diameter of 9.8 nm showed stable performance during oxidative dry reforming for 100 h on stream without deactivation by sintering or coke deposition. The superior activity and stability of MgAl2O4 supported Ni catalyst shown during reaction trials is consistent with characterization results from XRD, TPR, STEM, HR-STEM, XPS, and CHNS analysis.  相似文献   

5.
A two-stage system involving alkaline thermal gasification of cellulose with Ca(OH)2 sorbent and catalytic reforming with Ni/Fe dual-functional CaO based catalysts is proposed and applied to enhance H2 production and in-situ CO2 capture. The results show that the H2 concentration is maximized at a considerably lower temperature (500 °C) than commercialized biomass gasification processes, reducing energy consumption. Sol-gel method is deemed better than impregnation method for its lower cost and higher-concentration H2 production. Among the prepared catalysts, sol-NiCa catalyst exhibits the best performance in CO2 absorption, resistance to carbon deposition, and cyclic stability, creating maximum H2 concentration (79.22 vol%), H2 yield (27.36 mmol g−1 cellulose), and H2 conversion (57.61%). Introduction of Ni rather than Fe on the CaO based catalyst promotes steam methane reforming at moderate temperature range of 400–600 °C, generating low contents of CH4 (5.38 vol%), CO2 (4.82 vol%), and CO (10.58 vol%).  相似文献   

6.
CH3OH steam reforming is an attractive way to produce hydrogen with high efficiency. In this study, CuO.xAl2O3 (x = 1, 2, 3, and 4) were fabricated based on the solid-state route, and the calcined samples were employed in methanol steam reforming at atmospheric pressure and in the temperature range of 200–450 °C. The results revealed that all samples have a high BET area (173–275 m2 g−1), and their crystallinity was reduced by increasing the alumina content in the catalyst formulation. The catalytic activity tests showed that the CH3OH conversion and H2 selectivity decreased by rising the Al2O3·CuO molar ratio. The methanol conversion enhanced from 13% to 85% by increasing the reaction temperature from 200 °C to 450 °C over the CuO·Al2O3 catalyst, due to the higher reducibility of this catalyst at lower temperatures compared to other prepared samples. The influence of calcination temperature (300–500 °C), GHSV (28,000–48000 ml h−1. g−1cat), feed ratio (C:W = 1:1 to 1:9), and reduction temperature (250–450 °C) was also determined on the yield of the chosen sample. The results revealed that the maximum methanol conversion decreased from 90 to 79% by raising the calcination temperature from 300 to 500 °C due to the reduction of surface area and sintering of species at high calcination temperatures.  相似文献   

7.
The coupling performance of nano-CaO carbonation with the steam methane reforming (SMR) during reactive sorption enhanced reforming process (ReSER) for hydrogen production was studied by simulation and experimental evaluation. A two-dimensional axial symmetric pseudo-homogeneous mathematic model was established based on nano-CaO carbonation kinetics with the Boltzmann equation style and SMR reaction kinetics. The coupling performance was studied by varying carbonation rate constant (kcarb) and the maximum carbonation conversion (Xmax) in the model. The mathematic model was numerically solved by the COMSOL Multiphysics software and experimentally evaluated using commercial nano-CaO as the CO2 adsorbent. An average relative deviation of 3.86% of CH4 conversion was obtained between the simulated and experimental results. The simulation results indicated the conversion of the CH4 was improved from 88% to 95.3% by increasing kcarb from 1.6 s−1 to 5.74 s−1 and the period of pre-breakthrough time could be extended from 2 min to 20 min by increasing Xmax from 0.3 to 0.9. CH4 conversion of maximum 94.1% when reaction was under 650 °C and 1 bar, the highest molar fraction of H2 of 99.7% when reaction at 600 °C and 1 bar, and the maximum enhancement factor of 45.4% was obtained at 576.3 °C, 2.8 bar.  相似文献   

8.
In this study, dry reforming of methane (DRM) employing a Ni/MgO–Al2O3 catalyst was undertaken to evaluate the effects of temperature (650, 700 and 750 °C), weight hourly space velocity (7.5, 15 and 30 L h−1 gcat−1) and catalyst MgO content (3, 5 and 10 wt%) on catalytic activity and coke-resistance. The catalysts were prepared by the wet impregnation method and were characterized by wavelength dispersive X-ray fluorescence (XRF), N2 physisorption, X-ray diffraction (XRD), temperature-programmed reduction (TPR-H2), temperature-programmed desorption (TPD-NH3), H2 chemisorption, thermogravimetric/derivative thermogravimetry analysis (TG/DTG) and scanning electron microscopy (SEM). The best conversions of methane (CH4) and carbon dioxide (CO2) and lower coke formation were obtained using higher temperatures, lower WHSV and 5 wt% MgO in the catalyst. The H2/CO molar ratios obtained were within the expected range for the DRM reaction. The experimental yields of H2 and CO differed from chemical equilibrium, mainly due to occurrence of the reverse water-gas shift reaction. Thermodynamic analysis of the reaction system, based on minimization of the Gibbs free energy, was performed in order to compare the experimental results with the optimal values for chemical equilibrium conditions, which has indicated that the DRM reaction was favored by higher temperature, lower pressure, and lower CH4/CO2 molar ratio.  相似文献   

9.
The mechanism and kinetic features of dry reforming with methane (DRM) over Ca promoted 1Co–1Ce/AC-N catalyst was investigated. The mechanistic pathway studies have conducted by FTIR and XPS analysis, structure-activity correlations demonstrated the CH4 and CO2 could adsorb on catalyst active sites and generate intermediate CHx, OH and CHxO, continue to generate CO and H2 and then desorbed from active sites. Moreover, CH4 could also oxidized by Ce4+ and CO2 reduced by Ce3+, the same content of Ce4+ and Ce3+ on promoted catalyst greatly improved the reaction rate. The kinetic of dry reforming with methane was examined for temperature between 650 and 850 at 800 °C. The research was carried out by changing the CH4/CO2 ratios between 0.3 and 3.0. The obtained experiment data were fitted by three typical kinetic models (Power Law, Eley-Rideal and Langmuir-Hinshelwood), the fitting results demonstrated that the best prediction of reforming rates can provided by Langmuir-Hinshelwood model for the reaction temperatures between 650 and 800 °C. Moreover, activation energies of methane and carbon dioxide consumption were ?117 and ?47 kJ/mol, indicating that much higher energy barrier is needed for methane activation compared to carbon dioxide.  相似文献   

10.
Ethanol steam reforming is a promising reaction which produces hydrogen from bio and synthetic ethanol. In this study, the nano-structured Ni-based bimetallic supported catalysts containing Cu, Co and Mg were synthesized through impregnation method and characterized by XRD, BET, SEM, TPR and TPD analysis. The prepared catalysts were tested in steam reforming of ethanol in the S/C = 6, GHSV of 20,000 mL/(gcat h) at the temperature range of 450–600 °C. Among the xNi/CeO2 (x = 10, 13, 15 wt%) catalyst, the sample containing 13 wt% Ni with surface area of 64 m2/g showed the best performance with 89% ethanol conversion and 71% H2 selectivity as well as low CO selectivity of 8% at 600 °C and The addition of Cu, Mg, and Co to catalyst structure were evaluated and it was found that the nature of second metal has a strong influence on the catalyst selectivity for H2 production. Considering to results of TPR analysis, the 13Ni–4Cu/CeO2 catalyst showed proper reduction which caused in better activity. On the other side based on TPD analysis, the more basic property of 13Ni–4Mg/CeO2 bimetallic catalyst provided a better condition to methane steam reforming, leading to lower CH4 selectivity and consequently more H2 production. The 13Ni–4Cu/CeO2 exhibited the highest activity and lowest selectivity towards ethanol conversion and CO production about 99% and 4%, while the 13Ni–4Mg/CeO2 catalyst possessed the highest H2 selectivity and lowest CH4 selectivity about 74% and 1% respectively at 600 °C. The Ni–Cu and Ni–Mg bimetallic catalysts shows good stability with time on stream.  相似文献   

11.
This work has exploited the effects of silica on magnesium aluminum silicate supported NiCe based catalysts (NiCe/MgAlSi) prepared using sol-gel method followed by incipient wetness impregnation for syngas production through oxy-steam reforming (OSR) of biogas. Measurements investigating the effects of increasing Si/Al molar ratio (0–5) on activity and carbon deposition were performed in a once-through flow reactor at atmospheric pressure and temperatures of 600, 700, and 800 °C with a fixed GHSV of 45,000 ml gcat−1 h−1 and molar feed ratio of CH4/CO2/O2/H2O = 1/0.67/0.1/0.3. The catalysts were characterized by N2-physisorption, XRD, SEM, HRTEM, TGA, Raman, and ICP-OES. In the results, the addition of silica has been found to increase Ni crystallite sizes and decrease carbon deposition. Thus, NiCe/MgAlSi with Si/Al = 5 is promising, exhibiting high conversions of CH4 (91.7%), CO2 (80.4%), and H2/CO ratio of 1.6 without carbon deposition and good stability for 120 h at 800 °C.  相似文献   

12.
Biogas produced during anaerobic decomposition of plant and animal wastes consists of high concentrations of methane (CH4), carbon dioxide (CO2) and traces of hydrogen sulfide (H2S). The primary focus of this research was on investigating the effect of a major impurity (i.e., H2S) on a commercial methane reforming catalyst during hydrogen production. The effect of temperature on CH4 and CO2 conversions was studied at three temperatures (650, 750 and 850 °C) during catalytic biogas reforming. The experimental CH4 and CO2 conversions thus obtained were found to follow a trend similar to the simulated conversions predicted using ASPEN plus. The gas compositions at thermodynamic equilibrium were estimated as a function of temperature to understand the intermediate reactions taking place during biogas dry reforming. The exit gas concentrations as a function of temperature during catalytic reforming also followed a trend similar to that predicted by the model. Finally, catalytic reforming experiments were carried out using three different H2S concentrations (0.5, 1.0 and 1.5 mol%). The study found that even with the introduction of small amount of H2S (0.5 mol%), the CH4 and CO2 conversions dropped to about 20% each as compared to 65% and 85%, respectively in the absence of H2S.  相似文献   

13.
Biogas, a mixture of CO2/CH4, is reasonable for conversion to syngas (H2/CO) by dry methane reforming (DMR) reaction. The modification of Ni/SBA-16 with a lanthanum promoter using the co-impregnation technique is investigated in this study. The temperature of reaction (600–750 °C), La loading (3.85–11.56 wt%), and Ni loading (10–30 wt%) are the parameters that are varied for maximizing reaction conversions. The synthesized catalysts and SBA-16 supporting material were characterized by several methods before and after reaction. According to the analysis, the existence of La2O3 particles on the catalyst's surface has decreased the particle sizes, as well as enhanced their dispersion. Therefore, the maximum CH4 conversion of 94.21%, CO2 conversion of 90.12%, H2 yield of 90.53%, and H2/CO molar ratio of 2.03 are achieved using 20Ni-5.78La/SBA16 at 700 °C. Besides, this catalyst showed lower deposited coke and higher stability compared with other synthesized catalysts.  相似文献   

14.
Biomass pyrolysis gas (including H2, CO, CH4, CO2, C2H4, C2H6 and etc.) reforming for hydrogen production over Ni/Fe/Ce/Al2O3 catalysts was presented in this study. This study investigated how the operating conditions, such as the calcinations temperature of catalysts, the reaction temperature, the gas hourly space velocity (GHSV) and the ratio of H2O/C, affect the conversion of CH4 and CO2 and the selectivity of hydrogen from dry and steam reforming of pyrolysis gas. The experimental results indicated that, under the conditions: the reaction temperature of 600 °C, the GHSV of 900 h−1 and H2O/C of 0.92, the reaction efficiency is the optimal. Especially, the concentration of H2, CO, CH4, CO2, and C2Hn (C2H4 and C2H6) were 36.80%, 10.48%, 9.61%, 42.62%, 0.49% respectively. The conversion of CH4 and CO2 reached 45.9% and 51.09%, respectively. There were all kinds of reactions during the processing of reforming of pyrolysis gas. And the main reactions changed with the operation condition. It was due to the promoting or inhibiting interaction among different constituents in the pyrolysis gas and the different activity of catalysts in the different operation condition.  相似文献   

15.
The distributed power generation of methanol steam reforming reactor combined with solid oxide fuel cell (SOFC) has the characteristics of outstanding economic advantages. In this paper, a methanol steam reforming reactor was designed which integrates catalyst combustion, vaporization and reforming. By catalyst combustion, it can achieve stable operation to supply fuel for kW-class SOFC in real time without additional heating equipment. The optimal operating condition of the reforming reactor is 523–553 K, and the steam to carbon ratio (S/C) is 1.2. To study the reforming performance, methanol steam reforming (MSR), methanol decomposition (MD), water-gas shift (WGS) were considered. Operating temperature is the greatest factor affecting reforming performance. The higher the reaction temperature, the lower the H2 and CO2, the higher the CO and the methanol conversion rate. The methanol conversion rate is up to 95.03%. The higher the liquid space velocity (LHSV), the lower the methanol conversion rate, the lowest is 90.7%. The temperature changes of the reforming reactor caused by the load change of stack takes about 30 min to reach new balance. Local hotspots within the reforming reactor lead to an excessive local temperature to test a small amount of CH4 in the reforming gas. The methanation reaction cannot be ignored at the operating temperature. The reforming gas contains 70–75% H2, 3–8% CO, 18–22% CO2 and 0.0004–0.3% CH4. Trace amounts of C2H6 and C2H4 are also found in some experiments. The reforming reactor can stably supply the fuel for up to 1125 W SOFC.  相似文献   

16.
The influence of operating parameters over dry reforming of methane reaction was evaluated using a Ni-based catalyst obtained after calcination of a hydrotalcite-like precursor. The studied variables were mass to flow ratio (W/F), reaction temperature and CO2/CH4 ratio. Maximum methane and carbon dioxide conversions were achieved at W/F ratios above 0.21 g h L−1. The higher the W/F ratio was, the lower amount of water was formed, which led to a higher H2/CO ratio. The increase in reaction temperature produced an increase in conversions. Water concentration in the outlet stream showed a maximum at 600 °C. At this temperature, reverse water–gas-shift reaction (RWGS) was favoured because it is endothermic. However, steam reforming and carbon gasification were also favoured and they consumed great part of the water produced. CO2/CH4 ratios above 1 led to a higher CH4 conversion but selectivity to hydrogen decreased because RWGS reaction was favoured. When CO2/CH4 was below unity, CH4 conversion decreased but less amount of water was produced so a higher H2 selectivity was achieved. The catalyst exhibited good stability over dry reforming of methane under all the tested conditions, which may be ascribed to its high basicity. This property improved CO2 adsorption and then RWGS reaction and carbon gasification.  相似文献   

17.
This paper presents an experimental investigation for an improved process of sorption-enhanced steam reforming of methane in an admixture fixed bed reactor. A highly active Rh/CeαZr1−αO2 catalyst and K2CO3-promoted hydrotalcite are utilized as novel catalyst/sorbent materials for an efficient H2 production with in situ CO2 capture at low temperature (450–500 °C). The process performance is demonstrated in response to temperature (400–500 °C), pressure (1.5–6.0 bar), and steam/carbon ratio (3–6). Thus, direct production of high H2 purity and fuel conversion >99% is achieved with low level of carbon oxides impurities (<100 ppm). A maximum enhancement of 162% in CH4 conversion is obtained at a temperature of 450 °C and a pressure of 6 bar using a steam/carbon molar ratio of 4. The high catalyst activity of Rh yields an enhanced CH4 conversion using much lower catalyst/sorbent bed composition and much smaller reactor size than Ni-based sorption enhanced processes at low temperature. The cyclic stability of the process is demonstrated over a series of 30 sorption/desorption cycles. The sorbent exhibited a stable performance in terms of the CO2 working sorption capacity and the corresponding CH4 conversion obtained in the sorption enhanced process. The process showed a good thermal stability in the temperature range of 400–500 °C. The effects of the sorbent regeneration time and the purge stream humidity on the achieved CH4 conversion are also studied. Using steam purge is beneficial for high degree of CO2 recovery from the sorbent.  相似文献   

18.
By means of advanced techniques of molecular simulations, we have studied the chemical equilibrium of methane steam reforming reaction. We have computed the conversion of CH4, yield and selectivity of H2, etc. in the gas phase by reactive canonical Monte Carlo (RCMC) method and compared with those from Gibbs energy of formation method. The consistency of the two methods encourages us to use the RCMC method to optimize the operating conditions. We found that under low pressure 0.1 MPa, high temperature 1073 K and high water-gas ratio H2O/CH4 = 5, the CH4 conversion, H2 yield and selectivity were the highest, with the values of 99.93%, 3.51 mol/molCH4 and 99.98%, respectively. In addition, the pore size of activated carbon significantly affects the chemical equilibrium composition in the pores. Since low pressure and high temperature are not conducive to the adsorption of reactive components by activated carbon, the chemical balance in the pores cannot be improved. At 773 K, 3.0 MPa and pore width is less than 2 nm, the pores are mainly occupied by CH4 and H2O reactant molecules. Further increasing the temperature can increase the H2 content in the pores, but the adsorption capacity in the pores will decrease. We use activated carbon to adsorb and separate CO and H2 (CO:H2 = 1:3), the main components after the gas phase reaction reaches equilibrium. At 298 K, 7.5 MPa and the optimal pore width of 0.76 nm, the CO/H2 selectivity is 28.3 and the CO adsorption capacity is 8.45 mmol/cm3.  相似文献   

19.
The premise of this research is to find whether methane (CH4) and carbon dioxide (CO2) produced during biomass gasification can be converted to carbon monoxide (CO) and hydrogen (H2). Simultaneous steam and dry reforming was conducted by selecting three process parameters (temperature, CO2:CH4, and CH4:steam ratios). Experiments were carried out at three levels of temperature (800 °C, 825 °C and 850 °C), CO2:CH4 ratio (2:1, 1:1 and 1:2), and CH4:steam ratio (1:1, 1:2 and 1:3) at a residence time of 3.5 × 103 gcat min/cc using a custom mixed gas that resembles biomass synthesis gas, over a commercial catalyst. Experiments were conducted using a Box-Behnken approach to evaluate the effect of the process variables. The average CO and CO2 selectivities were 68% and 18%, respectively, while the CH4 and CO2 conversions were about 65% and 48%, respectively. The results showed optimum conditions for maximum CH4 conversion was at 800 °C, CO2:CH4 ratio and CH4:steam ratios of 1:1.  相似文献   

20.
Methane steam reforming is currently the most widely used hydrogen production reaction in industry today. Ni/Nb–Al2O3 catalysts were prepared by treatment under H2, N2, and air atmosphere prior to reduction and applied for methane steam reforming reaction at low temperature (400–600 °C). The hydrogen-treated catalysts increased catalytic activity, with 55.74% methane conversion at S/C = 2, GSVH of 14400 mL g?1 h?1 and 550 °C. The H2 atmosphere treatment enhanced the Ni–Nb interaction and the formation of stable, tiny, homogeneous Ni particles (6 nm), contributing to good activity and stability. In contrast, the catalysts treated with nitrogen and air showed weaker interactions between Ni and Nb species, whereas the added Nb covered the active sites, which caused the decrease in activity. Meanwhile, carbon accumulation was also observed. This work is informative for preserving small nano-sized nickel particles to enhance catalytic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号