首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Biodiesel and oxyhydrogen (HHO) gas have shown promising results in improving engine performance and emissions. In this work, the effects of HHO gas and 5% biodiesel blends (B5) and their combined use in a 315 cc diesel engine have been analyzed. Biodiesel is produced by base catalyzed transesterification and cleaned by emulsification. Its calculated cetane index (CCI) was 61.4. HHO gas is produced from electrolysis of concentrated potassium hydroxide solution. The use of 5% biodiesel blend resulted in a significant rise of 9.4% in the brake thermal efficiency (BTE) and a maximum reduction of 8.19% in the brake specific fuel consumption (BSFC). HHO enrichment of diesel and biodiesel at 2.81 L/min through the intake manifold improved the torque and power by an average of over 3%. HHO addition also improved the BTE of diesel by a maximum of 3.67%. The combination of high CCI biodiesel fuel and HHO creates a mixture that has shortened the ignition delay (ID) to the point that adverse effects were observed due to the premature combustion as shown by the average decrease in the BTE of 2.97% compared to B5. Thus, B5, on its own, is found to be the optimum fuel under these conditions.  相似文献   

2.
Biofuels extracted from non-edible oil is sustainable and can be used as an alternative fuel for internal combustion engines. This study presents the performance, emission and combustion characteristic analysis by using simarouba oil (obtained from Simarouba seed) as an alternative fuel along with hydrogen and exhaust gas recirculation (EGR) in a compression ignition (CI) engine operating on dual fuel mode. Simarouba biofuel blend (B20) was prepared on volumetric basis by mixing simarouba oil and diesel in the proportion of 20% and 80% (v/v), respectively. Hydrogen gas was introduced at the flow rate of 2.67 kg/min, and EGR concentration was maintained at 30% of total air introduction. Performance, combustion and emission characteristics analysis were examined with biodiesel (B20), biodiesel with hydrogen substitution and biodiesel, hydrogen with EGR and were compared with neat diesel operation. Results indicate that BTE of the engine operating with biodiesel B20 was decreased when compared to neat diesel operation. However, introducing hydrogen along with B20 blend into the combustion chamber shows a slight increase in the BTE by 1%. NOx emission was increased to 18.13% with the introduction of hydrogen than that of base fuel (diesel) operation. With the introduction of EGR, there is a significant reduction in NOx emission due to decrease in in-cylinder temperature by 19.07%. A significant reduction in CO, CO2, and smoke emissions were also noted with the introduction of both hydrogen and EGR. The ignition delay and combustion duration were increased with the introduction of hydrogen, EGR with biodiesel than neat diesel operation. Hence, the proposed biodiesel B20 with H2 and EGR combination can be applied as an alternative fuel in CI engines.  相似文献   

3.
The main purpose of this study is to analyse the effects of oxy hydrogen (HHO) along with the Moringa oleifera biodiesel blend on engine performance, combustion and emission characteristics. HHO gases were generated using the typical electrolysis process using the potassium hydroxide solution. The experiments were performed under various engine loads of 25%, 50%, 75%, and 100% in a constant speed engine. Biodiesel from the M. oleifera was prepared by the transesterification process. Further, the procured biodiesel blends mixed with neat diesel at the concentration of 20% (B20) and 40% (B40). In addition to above, the HHO gas flow rate to the engine chamber maintained at the flow rate of 0.5 L-1. The use of the 20% and 40% blends with HHO reported less BTE compared to the neat diesel. However, B20 reported marginal rise in the BTE due to the addition of the HHO gas. On the other hand, addition of HHO gas to the blends significantly dropped the brake specific fuel consumption. With regard to the emissions, addition of the biodiesel blends reduced the concentration of the CO, HC, and CO2. Nevertheless, no reduction reported in the formation of the NO. However, adding the HHO to the biodiesel reduced the average NOx by 6%, which is a substantial effect. Overall, HHO enriching biodiesel blends are the potential replacement for the existing fossil fuels for its superior fuel properties compared to the conventional diesel.  相似文献   

4.
Oxy-hydrogen gas (HHO) is a carbon-free fuel, which is produced by the water electrolysis process. It can be used as an alternative to hydrogen since the current global hydrogen production and storage may not meet the required demand for transportation applications. This research work investigates the engine behavior of a compression ignition (CI) engine operated in dual-fuel mode by inducting HHO as a primary fuel and injecting two different pilot fuels viz., diesel, and JME20 (a blend composed of 80% diesel with 20% Jatropha methyl ester) at optimized engine conditions. The results revealed that; heat release rate, brake thermal efficiency, exhaust gas temperature, and nitric oxide emission are found to be higher about 5.2%, 1.1%, 18.6%, and 19.6% respectively, while unburnt hydrocarbon, carbon monoxide, and smoke emissions are reduced by about 33.3%, 29.4%, and 18.7% respectively in Opt.JME20 + HHO operation compared to that of the baseline data at maximum load.  相似文献   

5.
With a specific end goal to take care of the worldwide demand for energy, a broad research is done to create alternative and cost effective fuel. The fundamental goal of this examination is to investigate the combustion, performance and emission characteristics of diesel engine using biodiesel blends enriched with HHO gas. The biodiesel blends are gotten by blending KOME obtained from transesterification of karanja oil in various proportions with neat diesel. The HHO gas is produced by the electrolysis of water in the presence of sodium bicarbonate electrolyte. The constant flow of HHO gas accompanied with biodiesel guarantees lessened brake specific fuel consumption by 2.41% at no load and 17.53% at full load with increased the brake thermal efficiency by 2.61% at no load and 21.67% at full load contrasted with neat diesel operation. Noteworthy decline in unburned hydrocarbon, carbon monoxide, carbon-dioxide emissions and particulate matter with the exception of NOx discharge is encountered. The addition of EGR controls this hike in NOx with a slight decline in the performance characteristics. It is clear that the addition of HHO gas with biodiesel blends along with EGR in the test engine improved the overall characterization of engine.  相似文献   

6.
In this experimental research, the hydrogen gas at a different flow rate (4 lpm, 8 lpm, & 12 lpm) is introduced into the intake port of a diesel engine fueled with B20 (20% CNSL (Cashew nut shell liquid) + 80% diesel) biodiesel blend to find out the best H2 flow rate. Then, ethanol-blended (5%, 10%, and 15% by volume) B20 blend along with the best H2 flow rate are tested in the same engine to examine the engine performance. The experimental results showed that B20 with 8 lpm H2 flow gives the maximum brake thermal efficiency and subsequently reduces the BSFC. Furthermore, by blending ethanol with the B20 blend, the BTE of the engine is improved further. The 10% ethanol blended B20 blend with 8 lpm hydrogen flow gives the maximum BTE of 37.9% higher than diesel whose values are 33.6% at full load. Also, this fuel combination led to the maximum reduced levels of CO and HC emissions with an increase in exhaust gas temperature and NOx emissions. From the results, the 10% ethanol blended B20 blend with 8 lpm H2 flow dual-fuel configuration is recommended as an alternative to sole diesel fuel.  相似文献   

7.
In this current work, exhaustive research work is conducted in three phases, in the initial phase, WFO was used for producing WFO treated biomass and in the second phase, influence of PFIP and PFIT has been examined. Further in the successive phase, effect of hydrogen HMI, HPI and EGR on the combustion and emission characteristics of CRDI diesel engine operated on dual-fuel mode using DiSOME and PG combination is evaluated. In the current study, in a CRDI engine, PFIT was employed ranging from 0 to 15°CA bTDC and changed in steps of 5 and PFIP was used from 600 to 1000 bar and varied in successive steps of 200 bar. Further flow rate of hydrogen was kept 8 L/min constant and HMIT was employed in the range from TDC to 15°aTDC and changed in stages of 5. Correspondingly, HID was varied from 30 to 90°CA with 30°CA dwell and EGR was used in the range from 0 to 15% by vol. and varied in steps of 5. Outcome of the work showed that, DiSOME-PG operation with 10°bTDC PFIT, 800 bar PFIP, 10°aTDC of HMI, 60°CAHID and 5% EGR rate showed lower BTE by 5.8% and increased smoke levels by 10.8%, HC by 8.6%, CO by 6.5% and marginally decreased NOx by 6.4% was observed in comparison to the same fuel blend with zero EGR at 80% load. Further, marginally amplifiedID and CD with loweredCP and HRR has been noticed. Study revealed thatH2addition to low calorific value gas (PG), method of pilot fuel addition and EGR is affected dual fuel engine performance, but provided drastic reductions in smoke and NOx emissions.  相似文献   

8.
The environmental degradation and depletion of fossil fuel, urges the need of renewable fuel for IC engines. Among the renewable fuel, biodiesel are widely used as alternative fuel but for recent years hydrogen is also considered as alternative fuel because of zero emission but it possess higher auto ignition temperature. In order to reduce the self-ignition temperature of hydrogen and another liquid fuel is mixed and operated as a dual fuel mode condition in CI engine. The current investigation aims to analyse the impact of natural antioxidant additive on hydrogen-enriched biodiesel operation in a diesel engine. During the experimentation process hydrogen is admitted at the intake manifold and B20 blend of juliflora biodiesel is injected in combustion cylinder. The three test fuel samples are used for the experimentation process such as diesel, B20 and B20 with hydrogen in different flow rates such as 8, 10, 12, 16,20lpm. B20 with hydrogen shows an increment of brake thermal efficiency (BTE). Among the test fuels B20 + 16lpm and B20 + 20lpm blends have better improvement of BTE of 28.815% and 28.32%, which is higher than the conventional engine at maximum load CO, HC emission is also lower for B20 + 16lpm and B20 + 20lpm than other blends but the NOx emission increases of 26 and 28% than diesel respectively. In order to minimize the NOx emission, natural antioxidant additive Melia Azedarach (MA) of 1000 ppm is added to B20 + 16lpm and found that B20 + 16lpm with MA shows an improvement of BTE 2.17% higher than B20 + 16lpm without additive and the NOx emission for B20 + 16lpm with additive is 1079 ppm, which is 21.9% lower than B20 + 16lpm without additives. Therefore B20 + 16lpm with additive is superior than other test blends.  相似文献   

9.
The proposed experimental study aims to investigate the effect of adding HHO gas with a constant flowrate (50% of the engine capacity) on the thermal efficiency for six different Biodiesel/diesel blends, which are 0B, 10B, 15%B, 20B, 25B and 30B. For all the studied fuelling scenarios, it was decided to mix HHO gas with the inlet air perpendicularly on the air streamline by a constant flowrate aiming to enhance the thermal efficiency of the engine. The study assumed maintain the rotational speed of the engine is constant (four different speeds) while varying the engine torque. The experimental results were recorded for four different rotational speeds of the engine, which are 1500, 1750, 2000 and 2250 RPM. Obtained results investigated that, increasing biodiesel content resulted in reducing the engine's brake thermal efficiency and increasing its brake specific fuel consumption due to the relatively lower heat content of the biodiesel comparing with conventional diesel. Adding HHO gas to the engine resulted in enhancing the thermal efficiency due to its high heat content and it was observed that; 20B with HHO gas supply provided the highest brake thermal efficiency of the engine as well as reducing its brake specific fuel consumption.  相似文献   

10.
Energy security is an important consideration for development of future transport fuels. Among the all gaseous fuels hydrogen or hydroxy (HHO) gas is considered to be one of the clean alternative fuels. Hydrogen is very flammable gas and storing and transporting of hydrogen gas safely is very difficult. Today, vehicles using pure hydrogen as fuel require stations with compressed or liquefied hydrogen stocks at high pressures from hydrogen production centres established with large investments.Different electrode design and different electrolytes have been tested to find the best electrode design and electrolyte for higher amount of HHO production using same electric energy. HHO is used as an additional fuel without storage tanks in the four strokes, 4-cylinder compression ignition engine and two-stroke, one-cylinder spark ignition engine without any structural changes. Later, previously developed commercially available dry cell HHO reactor used as a fuel additive to neat diesel fuel and biodiesel fuel mixtures. HHO gas is used to hydrogenate the compressed natural gas (CNG) and different amounts of HHO-CNG fuel mixtures are used in a pilot injection CI engine. Pure diesel fuel and diesel fuel + biodiesel mixtures with different volumetric flow rates are also used as pilot injection fuel in the test engine. The effects of HHO enrichment on engine performance and emissions in compression-ignition and spark-ignition engines have been examined in detail. It is found from the experiments that plate type reactor with NaOH produced more HHO gas with the same amount of catalyst and electric energy. All experimental results from Gasoline and Diesel Engines show that performance and exhaust emission values have improved with hydroxy gas addition to the fossil fuels except NOx exhaust emissions. The maximum average improvements in terms of performance and emissions of the gasoline and the diesel engine are both graphically and numerically expressed in results and discussions. The maximum average improvements obtained for brake power, brake torque and BSFC values of the gasoline engine were 27%, 32.4% and 16.3%, respectively. Furthermore, maximum improvements in performance data obtained with the use of HHO enriched biodiesel fuel mixture in diesel engine were 8.31% for brake power, 7.1% for brake torque and 10% for BSFC.  相似文献   

11.
The aim of this study is to investigate the suitability of isobutanol–diesel fuel blends as an alternative fuel for the diesel engine, and experimentally determine their effects on the engine performance and exhaust emissions, namely break power, break specific fuel consumption (BSFC), break thermal efficiency (BTE) and emissions of CO, HC and NOx. For this purpose, four different isobutanol–diesel fuel blends containing 5, 10, 15 and 20% isobutanol were prepared in volume basis and tested in a naturally aspirated four stroke direct injection diesel engine at full -load conditions at the speeds between 1200 and 2800 rpm with intervals of 200 rpm. The results obtained with the blends were compared to those with the diesel fuel as baseline. The test results indicate that the break power slightly decreases with the blends containing up to 10% isobutanol, whereas it significantly decreases with the blends containing 15 and 20% isobutanol. There is an increase in the BSFC in proportional to the isobutanol content in the blends. Although diesel fuel yields the highest BTE, the blend containing 10% isobutanol results in a slight improvement in BTE at high engine speeds. The results also reveal that, compared to diesel fuel, CO and NOx emissions decrease with the use of the blends, while HC emissions increase considerably.  相似文献   

12.
In this study, with the aim of reducing the energy consumption in the production of HHO gas for use in the combustion process of diesel fuel, different modes of gas production were investigated using electrolyzers. According to previous studies, the energy consumption rate of the electrolyzer to produce a high volumetric flow of HHO gas is very high. This high rate will restrict the use of equipment such as high-capacity batteries. The effects of HHO gas injection at the idle speed of the engine at a low temperature were evaluated. Because in this situation, the engine makes high air pollution. The results showed that the percentage of CO, CO2, HC, and NOX gases decreased by 66%, 33%, 38%, and 11%, respectively. On the other hand, the amount of O2 gas in the exhaust increased by 18%. These results were reported for HHO gas injection from 10 to 45 ml/s. The performance of Group Method of Data Handling (GMDH) neural network was desirable in modeling diesel engine pollutants. Because the Root-Mean-Square Error (RMSE) criterion for all evaluated gases is less than 0.32. The GMDH neural network was used for modeling the operation of the diesel engine with HHO supplemental fuel. The GMDH results showed that this artificial network can measure all engine exhaust gases. It can be used as a sensor and virtual simulator for this diesel engine with HHO supplemental fuel.  相似文献   

13.
The present study investigated the effect of compression ratio (CR) with the use of exhaust gas recirculation (EGR) technology on the performance of combustion characteristics at different CRs and engine loads; the brake thermal efficiency (BTE), specific fuel consumption (SFC), volumetric efficiency (VOL.EFF), exhaust gas temperature, carbon dioxide emission (CO2), hydrocarbons (HC), nitrogen oxides (NOx), and oxygen content (O2). The single-cylinder, four-stroke compression ignition engine was run on a mixture of diesel and biodiesel prepared from Iraqi waste cooking oil at (B0, B10, B20, and B30). A comparison has been achieved for these combustion characteristics at different blends, load, and CRs (14.5, 15.5, and 16.5) at 1500 rpm constant engine speed. The transesterification process is used to produce biodiesel and ASTM standards have been used to determine the physical and chemical properties of biodiesel and compare them to net diesel fuel. The preliminary conducting tests indicated that engine performance and emissions improved with the B20 mixture. Experimental test results showed an increase in BTE when CR increased by 17% and SFC increased by 23%. It also found a higher VOL.EFF by 6% at higher pressure ratios. A continuous decrease in BTE values and an increase in SFC were sustained when the percentage of biodiesel in the mixture was increased. Emissions of carbon dioxide, HC, and NOx increased by 12%, 50%, and 40%, respectively, as CR reached high values. NOx increased with the addition of biodiesel to 35%, which necessitated the use of EGR technology at rates of 5% and 10%. The results indicated that the best results were obtained in the case of running the engine with a mixing ratio of B20 with the addition of 10% EGR, NOx decreased by 47% against a slight increase in other emissions.  相似文献   

14.
Hydrogen and HHO enriched biodiesel fuels have not been investigated extensively for compression ignition engine. This study investigated the performance and emissions characteristics of a diesel engine fueled with hydrogen or HHO enriched Castor oil methyl ester (CME)-diesel blends. The production and blending of CME was carried out with a 20% volumetric ratio (CME20) using diesel fuel. In addition, the enrichment of intake air was carried out using pure HHO or hydrogen through the intake manifold with no structural changes – with the exception of the reduction of the amount of diesel fuel – for a naturally aspirated, four cylinder diesel engine with a volume of 3.6 L. Hydrogen amount was kept constant with a ratio of 10 L/min throughout the experiments. Engine performance parameters, including Brake Power, Brake Torque, Brake Specific Fuel Consumption and exhaust emissions – including NOx and CO, – were tested at engine speeds between 1200 and 2600 rpm. It is seen that HHO enriched CME has better results compared to pure hydrogen enrichment to CME. An average improvement of 4.3% with HHO enriched CME20 was found compared to diesel fuel results while pure hydrogen enriched CME20 fuel resulted with an average increase of 2.6%. Also, it was found that the addition of pure hydrogen to CME had a positive effect on exhaust gas emissions compared to that adding HHO. The effects of both enriched fuels on the engine performance were minimal compared to that of diesel fuel. However, the improvements on exhaust gas emissions were significant.  相似文献   

15.
As a hydrogen fuel for real-time production without storage, HHO has great research prospect and significance. In this paper, we conducted experiments on a spark ignition (SI) engine which has two independent fuel supply systems to compare two combination modes of gasoline port injection plus HHO (GPI + HHO) and gasoline direct injection plus HHO (GDI + HHO) at different HHO flow rate, λ, engine speed and load. The results show that, in both modes, HHO addition increases the maximum cylinder pressure and torque. With the increase of HHO flow rate, the flame development period and flame propagation period shorten, the crank angle corresponding to the maximum cylinder pressure is closer to top dead center. In addition, GDI + HHO mode has better engine performance. HHO has a significant effect on improving combustion stability. Especially at λ = 1.4, as HHO flow rate increases from 0 to 16 L/min, the coefficient of indicated mean effective pressure variation of GPI + HHO and GDI + HHO mode decreases by 69.17% and 58.29%, respectively. Moreover, HHO addition improves HC and CO emissions but increases NOx emissions. CO and HC emissions of GDI + HHO mode are the lowest under all conditions, and reaching the lowest value when HHO flow rate = 16 L/min. Besides, GDI + HHO mode not only has lower NO emissions under normal working conditions (λ = 1) but also can maintain a better combustion environment under lean-burn conditions (λ = 1.2, 1.4). In general, the application of HHO as fuel in engine can improve combustion and emission characteristics and GDI + HHO mode is the best combination of gasoline and HHO.  相似文献   

16.
With an alarming enlargement in vehicular density, there is a threat to the environment due to toxic emissions and depleting fossil fuel reserves across the globe. This has led to the perpetual exploration of clean energy resources to establish sustainable transportation. Researchers are continuously looking for the fuels with clean emission without compromising much on vehicular performance characteristics which has already been set by efficient diesel engines. Hydrogen seems to be a promising alternative fuel for its clean combustion, recyclability and enhanced engine performance. However, problems like high NOx emissions is seen as an exclusive threat to hydrogen fuelled engines. Exhaust gas recirculation (EGR), on the other hand, is known to overcome the aforementioned problem. Therefore, this study is conducted to study the combined effect of hydrogen addition and EGR on the dual fuelled compression ignition engine on a single cylinder diesel engine modified to incorporate manifold hydrogen injection and controlled EGR. The experiments are conducted for 25%, 50%, 75% and 100% loads with the hydrogen energy share (HES) of 0%, 10% and 30%. The EGR rate is controlled between 0%, 5% and 10%. With no substantial decrement in engine's brake thermal efficiency, high gains in terms of emissions are observed due to synergy between hydrogen addition and EGR. The cumulative reduction of 38.4%, 27.4%, 33.4%, 32.3% and 20% with 30% HES and 10% EGR is observed for NOx, CO2, CO, THC and PM, respectively. Hence, the combination of hydrogen addition and EGR is observed to be advantageous for overall emission reduction.  相似文献   

17.
Exhaust gas recirculation (EGR) strategy has been recently employed in natural gas SI engines as an alternative to lean burn technique in order to satisfy the increasingly stringent emission standards. However, the effect of EGR on some of engine performance parameters compared to lean burn is not yet quite certain. In the current study, the effect of both EGR and lean burn on natural gas SI engine performance was compared at similar operating conditions. This was achieved numerically by developing a computer simulation of the four-stroke spark-ignition natural gas engine. A two-zone combustion model was developed to simulate the in-cylinder conditions during combustion. A kinetic model based on the extended Zeldovich mechanism was also developed in order to predict NO emission. The combustion model was validated using experimental data and a good agreement between the results was found. It was demonstrated that adding EGR to the stoichiometric inlet charge at constant inlet pressure of 130 kPa decreased power more rapidly than excess air; however, the power loss was recovered by increasing the inlet pressure from 130 kPa at zero dilution to 150 kPa at 20% EGR dilution. The engine fuel consumption increased by 10% when 20% EGR dilution was added at inlet pressure of 150 kPa compared to using 20% air dilution at 130 kPa. However, it was found that EGR dilution strategy is capable of producing extremely lower NO emission than lean burn technique. NO emission was reduced by about 70% when the inlet charge was diluted at a rate of 20% using EGR instead of excess air.  相似文献   

18.
There are two main reasons of alternative fuel search of scientists: environmental problems resulted from combustion of fossil fuels and limited reserves of crude oil. Biodiesel and Hydrogen (H2) are two of the most promising alternative fuels with their environmental friendly combustion profiles. The aim of this study was to evaluate vibration level of a hydroxyl (HHO) gas generator installed and diesel engine using different kinds of biodiesel fuels. In this study, at different flow rates, the effect of HHO gas addition on engine vibration performance was investigated with a Mitsubishi Canter 4D34-2A diesel engine. HHO gas introduced to the test engine via its intake manifold with 2, 4 and 6 L per minute (LPM) flow rates when the engine was fuelled with sunflower, canola, and corn biodiesels. The vibration data was collected between 1200 and 2400 rpm engine speeds by 300 rpm intervals. Finally, artificial neural network (ANN) approach was conducted in order to predict the effect of fuel properties and HHO amount on engine vibration level.  相似文献   

19.
In this study, the effect of adding hydrogen to natural gas and EGR ratio was conducted on a diesel engine to investigate the engine performance and exhaust gases by AVL Fire multi-domain simulation software.For this investigation, a mixture of hydrogen fuel and natural gas replaced diesel fuel. The percentage of hydrogen in blend fuel changed from 0% to 40%. The compression ratio converted from 17:1 to 15:1. The EGR ratios were in three steps of 5%, 10%, and 15%, with different engine speeds from 1000 to 1800 RPM. The Gaussian process regression (GPR) was developed to model engine performance and exhaust emissions. The optimal values of EGR and the percentage of hydrogen in the blend of HCNG were extracted using a multi-objective genetic algorithm (MOGA).The results showed that by increasing EGR, thermal efficiency, the engine power, and specific fuel consumption decreased due to prolongation of combustion length while cumulative heat release increased but, its effect on cylinder pressure is insignificant. Adding hydrogen to natural gas increased the combustion temperature and, consequently NOx. While the amount of CO and HC decreased. The results of GPR and MOGA illustrated that at different engine speeds, the optimum values of EGR and HCNG were 6.35% and 31%, respectively.  相似文献   

20.
This study aims at producing hydroxy (HHO) gas using a dry cell electrolysis setup and utilising it along with orange oil in a diesel engine. First an electrolyser was designed considering the optimised values of the material (SS316L), electrolyte (NaOH), and electrode gap (2 mm). Then the biodiesel obtained from the waste orange peels, after transesterification, were blended with diesel at 25 and 50% by vol. The HHO gas was produced by the water electrolysis method by a plate-type electrolyser having a maximum production rate of 2.5 LPM with NaOH as the electrolyte. HHO gas was inducted through the inlet manifold along with the fresh air at a constant rate of 2 LPM with both the biodiesel blends. The performance, emission, and combustion outcomes of the single cylinder diesel engine for different load conditions (0–100%) were tested for all the blends with and without HHO addition. The results showed a considerable increase in brake thermal efficiency of 1.54% at full load condition, with a noticeable decrease in fuel consumption by 11.1% compared to conventional diesel fuel, was achieved for the O25 blend with HHO induction. Moreover, emissions like hydrocarbon, carbon monoxide and smoke were reduced by 17.6, 29.5, and 12.1%, respectively. However, the improvement in combustion outcomes led to the increase in nitrogen oxides emission by 9.67%. This study helped to understand the production process of HHO gas by dry cell electrolyser and its effect on the blend of orange oil methyl ester and diesel in dual-fuel mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号